Deep Learning for Time Series Forecasting

M2 Data Science & Artificial Intelligence

Juliette Chevallier

January 28, 2021

Introduction

1.1 Time Series Prediction

1.2 Multilayer Perceptron Regression

Making Predictions with Sequences

Sequence \leftrightarrow Explicit order on the observations that must be preserved when training models and making predictions.

- Sequence Prediction: Weather forecasting, Stock market prediction, Product recommendation;
- Sequence Classification: DNA Sequence Classification, Anomaly Detection, Sentiment Analysis;
- Sequence Generation: Text Generation, Handwriting Prediction, Music Generation;
- Sequence-to-Sequence Prediction: Multi-Step Time Series Forecasting, Text Summarization, Program Execution.

From: Vinyals, Toshev, Bengio, Erhan. Show and tell: A neural image caption generator. CVPR 2015

Previously Studied "Tools"

Time Series Analysis (Lecture 1):

- Describing temporal dynamics in great detail;
- Specific interest: unemployment rate, stock market indices, etc.;
- Realization of a stochastic process;
- Decomposition: trend, seasonality and (stochastic) reminder;

Previously Studied "Tools"

Time Series Analysis (Lecture 1):

- Describing temporal dynamics in great detail;
- Specific interest: unemployment rate, stock market indices, etc.;
- Realization of a stochastic process;
- Decomposition: trend, seasonality and (stochastic) reminder;

Longidudinal Data Analysis ↔ Mixed-Effect Models (Lecture 2):

- Make inferences about the population;
- Fairly general temporal processes: growth, disease monitoring, etc.;
- Low sample size;
- Highly structured data, grouping factors such as species, gender, etc.;
- Bayesian frameworks allows prediction;

Previously Studied "Tools"

Time Series Analysis (Lecture 1):

- Describing temporal dynamics in great detail;
- Specific interest: unemployment rate, stock market indices, etc.;
- Realization of a stochastic process;
- Decomposition: trend, seasonality and (stochastic) reminder;

Longidudinal Data Analysis ↔ Mixed-Effect Models (Lecture 2):

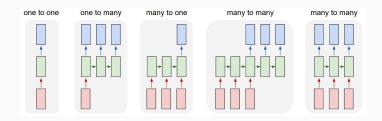
- Make inferences about the population;
- Fairly general temporal processes: growth, disease monitoring, etc.;
- Low sample size;
- Highly structured data, grouping factors such as species, gender, etc.;
- Bayesian frameworks allows prediction;

Huge amount of data, but *does not fall under the "time series"* as defined in Lecture 1.

 \rightarrow **Deep Learning**: MLP and CNN regression, RNN (LSTM), *etc.*

Why neural networks?

- Robust to noise, Support missing values;
- Nonlinear;
- Multivariate inputs and multi-step forecasts;
- Recurrent neural networks (RNN): Learned temporal dependence.



Tasks	Possible techniques
Weather forecasting Stock market prediction Product recommendation	
DNA Sequence Classification Anomaly Detection Sentiment Analysis	
Text Generation Handwriting Prediction Music Generation	
Multi-Step Time Series Forecasting Text Summarization Program Execution	
AE: Autoencoder CNN: Convolutional Neural Network GAN: Generative Adversarial Networks LME: Linear Mixed-Effect Models MLP: Multilayer Perceptrons	NLME: Nonlinear Mixed-Effect Models PDE: Partial Differential Equation RNN: Recurrent Neural Network TS: Time Series VAE: Variational Autoencoders

Tasks	Possible techniques
Weather forecasting	PDE, RNN
Stock market prediction	<i>TS</i> , RNN
Product recommendation	RNN
DNA Sequence Classification	
Anomaly Detection	
Sentiment Analysis	
Text Generation	
Handwriting Prediction	
Music Generation	
Multi-Step Time Series Forecasting	
Text Summarization	
Program Execution	
AE: Autoencoder	NLME: Nonlinear Mixed-Effect Models
CNN: Convolutional Neural Network GAN: Generative Adversarial Networks	PDE: Partial Differential Equation
LME: Linear Mixed-Effect Models	<i>TS:</i> Time Series
MLP: Multilayer Perceptrons	VAE: Variational Autoencoders

Tasks	Possible techniques
Weather forecasting	PDE, RNN
Stock market prediction	TS, RNN
Product recommendation	RNN
DNA Sequence Classification	CNN
Anomaly Detection	(N)LME, MLP, CNN, AE, GAN
Sentiment Analysis	(N)LME, MLP, CNN, AE, GAN
Text Generation Handwriting Prediction Music Generation	
Multi-Step Time Series Forecasting Text Summarization Program Execution	
AE: Autoencoder	NLME: Nonlinear Mixed-Effect Models
CNN: Convolutional Neural Network	PDE: Partial Differential Equation
GAN: Generative Adversarial Networks	RNN: Recurrent Neural Network
LME: Linear Mixed-Effect Models	TS: Time Series
MLP: Multilayer Perceptrons	VAE: Variational Autoencoders

Tasks	Possible techniques
Weather forecasting	PDE, RNN
Stock market prediction	TS, RNN
Product recommendation	RNN
DNA Sequence Classification	CNN
Anomaly Detection	(N)LME, MLP, CNN, AE, GAN
Sentiment Analysis	(N)LME, MLP, CNN, AE, GAN
Text Generation	CNN, VAE, GAN
Handwriting Prediction	(N)LME, CNN, VAE, GAN
Music Generation	CNN, VAE, GAN
Multi-Step Time Series Forecasting Text Summarization Program Execution	
AE: Autoencoder	NLME: Nonlinear Mixed-Effect Models
CNN: Convolutional Neural Network	PDE: Partial Differential Equation
GAN: Generative Adversarial Networks	RNN: Recurrent Neural Network
LME: Linear Mixed-Effect Models	TS: Time Series
MLP: Multilayer Perceptrons	VAE: Variational Autoencoders

	Tasks	Possible techniques
	Weather forecasting Stock market prediction Product recommendation	PDE, RNN TS, RNN RNN
	DNA Sequence Classification Anomaly Detection Sentiment Analysis	CNN (N)LME, MLP, CNN, AE, GAN (N)LME, MLP, CNN, AE, GAN
	Text Generation Handwriting Prediction Music Generation	CNN, VAE, GAN (N)LME, CNN, VAE, GAN CNN, VAE, GAN
-	Multi-Step Time Series Forecasting Text Summarization Program Execution	TS, RNN RNN CNN, AE
CI GA LN	E: Autoencoder VN: Convolutional Neural Network AN: Generative Adversarial Networks NE: Linear Mixed-Effect Models LP: Multilayer Perceptrons	NLME: Nonlinear Mixed-Effect Models PDE: Partial Differential Equation RNN: Recurrent Neural Network TS: Time Series VAE: Variational Autoencoders

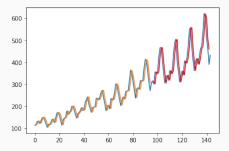
Tasks	Possible techniques
Weather forecasting	PDE, RNN
Stock market prediction	<i>TS</i> , RNN
Product recommendation	RNN
DNA Sequence Classification	CNN
Anomaly Detection	(N)LME, MLP, CNN, AE, GAN
Sentiment Analysis	(N)LME, MLP, CNN, AE, GAN
Text Generation	CNN, VAE, GAN
Handwriting Prediction	(N)LME, CNN, VAE, GAN
Music Generation	CNN, VAE, GAN
Multi-Step Time Series Forecasting	TS, RNN
Text Summarization	RNN
Program Execution	CNN, AE
AE: Autoencoder	NLME: Nonlinear Mixed-Effect Models
CNN: Convolutional Neural Network	PDE: Partial Differential Equation
<i>LME:</i> Linear Mixed-Effect Models	<i>RNN:</i> Recurrent Neural Network
MLP: Multilayer Perceptrons	VAE: Variational Autoencoders

Introduction

- 1.1 Time Series Prediction
- 1.2 Multilayer Perceptron Regression

• Time series prediction \longleftrightarrow Regression problem: x_{t+1} as a function of $x_t \rightsquigarrow$ Multilayer Perceptron model

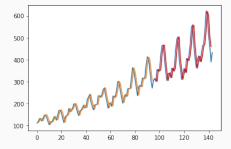
- Time series prediction \longleftrightarrow Regression problem: x_{t+1} as a function of $x_t \rightsquigarrow Multilayer Perceptron model$
- Long training, hyperparameters to be tuned...
- No more efficient than an ARIMA model (or even less)



Airline passengers: Blue=Whole Dataset, Orange=Training, Red=Predictions

Multilayer Perceptron Regression

- Time series prediction ↔ Regression problem: xt is a function of xt
 → Multilayer Perceptron model
- Long training, hyperparameters to be tuned...
- No more prictent than an ARIMA model (or even less)



Airline passengers: Blue=Whole Dataset, Orange=Training, Red=Predictions

Long Short-Term Memory Networks for Time Series Forecasting

2.1 Recurrent Neural Networks

2.2 Long Short Term Memory Neural Networks

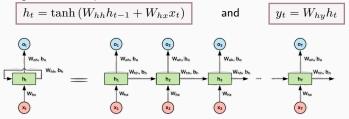
2.3 Time Series Forecasting Using LSTM Networks

• Idea: Make use of sequential information;

"Memory" \rightarrow capture information about what has been calculated so far

- Different types of RNN's:
 - One-to-one e.g. Image classification,
 - One-to-Many e.g. Image captioning,
 - Many-to-One e.g. Sentiment analysis,
 - Many-to-Many e.g. Machine Translation;
- O_t output state, h_t current time stamp, h_{t-1} previous time stamp, and x_t passed as input state

 W_{hh} weight at previous hidden state, W_{hx} weight at current input state, and W_{hy} weight at the output state



While backpropogating you may get 2 types of issues:

- Vanishing Gradient,
- Exploding Gradient.

While backpropogating you may get 2 types of issues:

- Vanishing Gradient
 - $\rightarrow Relu$ activation function,
 - \rightarrow LSTM, GRU.
- Exploding Gradient
 - \rightarrow Truncate or squash the gradients.

While backpropogating you may get 2 types of issues:

- Vanishing Gradient
 - $\rightarrow Relu$ activation function,
 - \rightarrow LSTM, GRU.
- Exploding Gradient
 - \rightarrow Truncate or squash the gradients.

Remarks:

- Training an RNN is a very difficult task,
- It cannot process very long sequences if using tanh or *Relu* as an activation function.

Long Short-Term Memory Networks for Time Series Forecasting

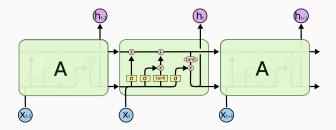
2.1 Recurrent Neural Networks

2.2 Long Short Term Memory Neural Networks

2.3 Time Series Forecasting Using LSTM Networks

Long Short Term Memory Neural Networks

"Special kind of RNN's, capable of learning long-term dependencies."

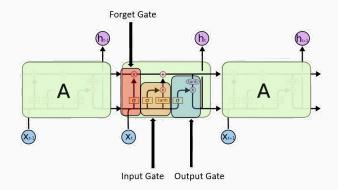


Remark: A Blog on LSTM's with nice visualization:

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

Long Short Term Memory Neural Networks

"Special kind of RNN's, capable of learning long-term dependencies."

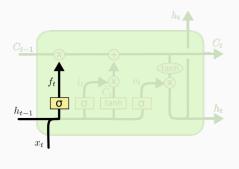


LSTM had a three step process: Forget gate, Input gate, Output gate.

Remark: A Blog on LSTM's with nice visualization: https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

Forget Gate

"Decides how much of the past you should remember."



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input:

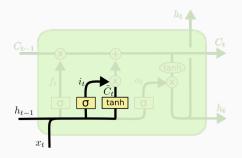
- Previous state h_{t-1},
- Content input x_t .

Output:

 A number between 0 (omit this) and 1 (keep this)for each number in the cell state C_{t-1}.

Update Gate or Input Gate:

"Decides how much of this unit is added to the current state."



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh\left(W_C \cdot [h_{t-1}, x_t] + b_C\right)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Input:

- Previous state h_{t-1},
- Content input x_t .

Output:

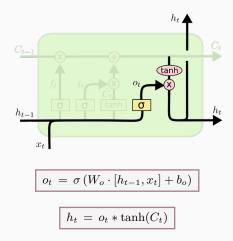
• Cell state C_t .

Remarks

- Sigmoid decides which values to let through 0,1;
- tanh gives weightage to the values which are passed deciding their level of importance ranging from -1 to 1.

Output Gate

"Decides which part of the current cell makes it to the output."



Input:

- Previous state h_{t-1},
- Content input x_t ,
- Cell stateC_t,

Output:

• Current state h_t .

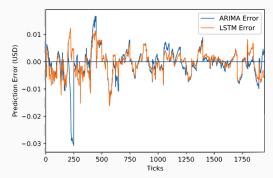
Long Short-Term Memory Networks for Time Series Forecasting

- 2.1 Recurrent Neural Networks
- 2.2 Long Short Term Memory Neural Networks
- 2.3 Time Series Forecasting Using LSTM Networks

Time Series Forecasting Using LSTM Networks

See "Practical Work 5 - Time Series Forecasting Using LSTM Networks"

- Strength of LSTM for time series forecasting,
- a non-exhaustive list of different variants of the vanilla LSTM.



Baughman, Haas, Wolski, Foster, Chard. Predicting Amazon Spot Prices with LSTM Networks. 2018.

Deep Learning for Anomaly Detection

3.1 Problem Nature and Challenges

3.2 Addressing the Challenges with Deep Anomaly Detection

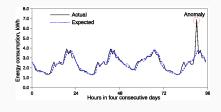
Anomaly Detection

Anomaly detection: Outlier detection or Novelty detection.

Broad domains of applications: risk management, compliance, security, financial surveillance, health and medical risk, AI safety, *etc*.

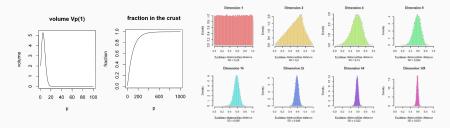
Major Problem Complexities:

- Unknownness,
- Heterogeneous anomaly classes,
- Rarity and class imbalance,
- Diverse types of anomaly:
 (i) Point anomalies, (ii) Conditional anomalies, (iii) Group anomalies.



Pang, Shen, Cao and van den Hengel. *Deep learning for anomaly detection: A review.* 2020.

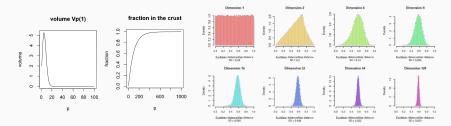
- 1. Low anomaly detection recall rate;
- 2. Anomaly detection in high-dimensional and/or not-independent data;
- 3. Data-efficient learning of normality/abnormality;
- 4. Noise-resilient anomaly detection;
- 5. Detection of complex anomalies;
- 6. Anomaly explanation.



1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

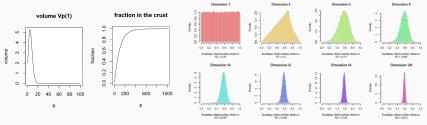
- 2. Anomaly detection in high-dimensional and/or not-independent data;
- 3. Data-efficient learning of normality/abnormality;
- 4. Noise-resilient anomaly detection;
- 5. Detection of complex anomalies;
- 6. Anomaly explanation.



1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

- 2. Anomaly detection in high-dimensional and/or not-independent data:
 - → Subspace/feature selection-based methods ▲ Intricate feature + proper information preserved? Detect anomalies from dependent instances (temporal, spatial,...);
- 3. Data-efficient learning of normality/abnormality;
- 4. Noise-resilient anomaly detection;
- 5. Detection of complex anomalies;
- 6. Anomaly explanation.



1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

- 2. Anomaly detection in high-dimensional and/or not-independent data:
 - \rightarrow Subspace/feature selection-based methods
 - \triangle Intricate feature + proper information preserved?

Detect anomalies from dependent instances (temporal, spatial,...);

3. Data-efficient learning of normality/abnormality:

Fully supervised anomaly detection requires labeled anomaly data Unsupervised anomaly detection requires prior knowledge of true anomalies \rightarrow Semi-supervised or weakly-supervised anomaly detection:

- 4. Noise-resilient anomaly detection;
- 5. Detection of complex anomalies;
- 6. Anomaly explanation.

Largely Unsolved Challenges in Anomaly Detection

1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

2. Anomaly detection in high-dimensional and/or not-independent data:

→ Subspace/feature selection-based methods ▲ Intricate feature + proper information preserved? Detect anomalies from dependent instances (temporal, spatial,...);

3. Data-efficient learning of normality/abnormality:

Fully supervised anomaly detection requires labeled anomaly data Unsupervised anomaly detection requires prior knowledge of true anomalies \rightarrow Semi-supervised or weakly-supervised anomaly detection;

4. Noise-resilient anomaly detection:

Weakly/semi-supervised anomaly detection assume clean labeled data;

- 5. Detection of complex anomalies;
- 6. Anomaly explanation.

Largely Unsolved Challenges in Anomaly Detection

1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

- 2. Anomaly detection in high-dimensional and/or not-independent data:
 - → Subspace/feature selection-based methods
 ▲ Intricate feature + proper information preserved?
 Detect anomalies from dependent instances (temporal, spatial,...);
- 3. Data-efficient learning of normality/abnormality:
 - Fully supervised anomaly detection requires labeled anomaly data Unsupervised anomaly detection requires prior knowledge of true anomalies
 - \rightarrow Semi-supervised or weakly-supervised anomaly detection;
- 4. Noise-resilient anomaly detection:

Weakly/semi-supervised anomaly detection assume clean labeled data;

5. Detection of complex anomalies:

Most methods are for point anomalies and focus on detect anomalies from single data sources;

6. Anomaly explanation.

Largely Unsolved Challenges in Anomaly Detection

1. Low anomaly detection recall rate:

A still high number of false positives on real-world data;

- 2. Anomaly detection in high-dimensional and/or not-independent data:
 - → Subspace/feature selection-based methods
 ▲ Intricate feature + proper information preserved?

Detect anomalies from dependent instances (temporal, spatial,...);

3. Data-efficient learning of normality/abnormality:

Fully supervised anomaly detection requires labeled anomaly data Unsupervised anomaly detection requires prior knowledge of true anomalies \rightarrow Semi-supervised or weakly-supervised anomaly detection;

4. Noise-resilient anomaly detection:

Weakly/semi-supervised anomaly detection assume clean labeled data;

5. Detection of complex anomalies:

Most methods are for point anomalies and focus on detect anomalies from single data sources;

6. Anomaly explanation:

Risks if anomaly detection models directly used as black-box models

 \rightarrow Explanation + Human expert.

Deep Learning for Anomaly Detection

3.1 Problem Nature and Challenges

3.2 Addressing the Challenges with Deep Anomaly Detection

Traditional vs. Deep Learning Methods in Anomaly Detection

Deep methods:

- Aims: learning feature representations or anomaly scores via neural networks
- End-to-end optimization;
- Learning of representations specifically tailored for anomaly detection;
- Learning intricate structures and relations from diverse types of data; High-dimensional data, image data, video data, graph data, *etc.*
- Many effective and easy-to-use network architectures;

	Traditional	Deep
End-to-end Optimization	×	\checkmark
Tailored Representation Learning	×	\checkmark
Intricate Relation Learning	Weak	Strong
Heterogeneity Handling	Weak	Strong

Deep Anomaly Detection

Dataset: Let $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ with $x_i \in \mathbb{R}^d$. Let $\mathcal{Z} \in \mathbb{R}^k$, $k \ll n$, be a representation space.

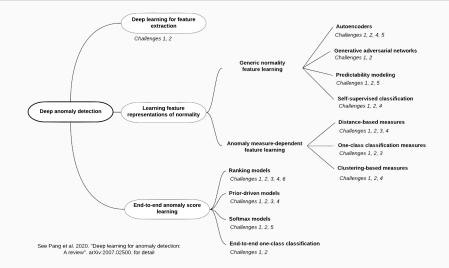
Deep anomaly detection aims at:

- learning a feature representation mapping function $\phi: \mathcal{X} \to \mathcal{Z}$
- **OR** an anomaly score learning function $\tau: \mathcal{X} \to \mathbb{R}$

so that:

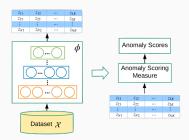
- anomalies easily differentiated from normal data instances in the space induced by ϕ or $\tau,$
- where ϕ and τ are neural networks with $h \in \mathbb{N}$ hidden layers,
- weight matrices: $\Theta = \{M^1, M^2, \dots, M^h\}.$

Hierarchical Taxonomy of Deep Anomaly Detection Methods



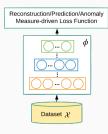
Proposed by *Pang, Shen, Cao, van den Hengel (2020)* Taxonomy of current deep anomaly detection techniques

Deep Learning For Feature Extraction

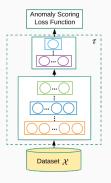


- Goal: Extract low-dimensional feature representations from high-dimensional and/or non-linearly separable data;
- The deep learning components work purely as dimensionality reduction only;
- f: unrelated to ϕ scoring method, applied onto the new space;
- Compared to PCA or random projection, better capability in extracting semantic-rich features and non-linear feature relations;

Learning Feature Representations of Normality



- *Goal:* Couple feature learning *with* anomaly scoringin some ways;
- *Two groups:* generic feature learning and anomaly measure-dependent feature learning.
- Generic Normality Feature Learning: Learn representations through generic methods not primarily designed for anomaly detection, but by forcing them to capture some key underlying data regularities; Autoencoders, Generative adversarial networks, Predictability modeling, Self-supervised classification
- Anomaly Measure-dependent Feature Learning: Learning feature representations specifically optimized for one particular anomaly measure. Distance-based measures, One-class classification measures, Clustering-based measures



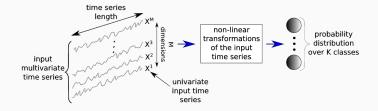
- Goal: Learning scalar anomaly scores in an end-to-end fashion;
- The anomaly scoring is not dependent on existing anomaly measures; it has a neural network that directly learns the anomaly scores;
- Novel loss functions are often required to drive the anomaly scoring network.
- Ranking models, Prior-driven models, Softmax models, End-to-end one-class classification

Suggested list of tools & datasets for anomaly detection on time-series data: https://github.com/rob-med/awesome-TS-anomaly-detection

To Go Further: Deep Learning for Time Series Classification

 Deep learning for time series classification: A review Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar & Pierre-Alain Muller

• Why dedicated algorithms for time series?



- Neural Networks and especially Recurrent Neural Networks have proven their efficiency;
- Be careful to choose the right method;
- A burgeoning and rapidly growing field of research.