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Introduction

1.1 Time Series Prediction
1.2 Multilayer Perceptron Regression



Making Predictions with Sequences

Sequence ↔ Explicit order on the observations that must be preserved when training
models and making predictions.

• Sequence Prediction: Weather forecasting, Stock market prediction, Product
recommendation;

• Sequence Classification: DNA Sequence Classification, Anomaly Detection,
Sentiment Analysis;

• Sequence Generation: Text Generation, Handwriting Prediction, Music Generation;
• Sequence-to-Sequence Prediction: Multi-Step Time Series Forecasting, Text

Summarization, Program Execution.

From: Vinyals, Toshev, Bengio, Erhan. Show and tell: A neural image caption generator. CVPR 2015
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Previously Studied “Tools”

Time Series Analysis (Lecture 1):

• Describing temporal dynamics in great detail;
• Specific interest: unemployment rate, stock market indices, etc.;
• Realization of a stochastic process;
• Decomposition: trend, seasonality and (stochastic) reminder;

Longidudinal Data Analysis ↔ Mixed-Effect Models (Lecture 2):

• Make inferences about the population;
• Fairly general temporal processes: growth, disease monitoring, etc.;
• Low sample size;
• Highly structured data, grouping factors such as species, gender, etc.;
• Bayesian frameworks allows prediction;

? Huge amount of data, but does not fall under the “time series” as defined
in Lecture 1.
→ Deep Learning: MLP and CNN regression, RNN (LSTM), etc.
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Neural Networks for Time Series

Why neural networks?

• Robust to noise, Support missing values;
• Nonlinear;
• Multivariate inputs and multi-step forecasts;
• Recurrent neural networks (RNN): Learned temporal dependence.
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Choosing the right setting

Tasks Possible techniques

Weather forecasting

PDE, RNN

Stock market prediction

TS, RNN

Product recommendation

RNN

DNA Sequence Classification

CNN

Anomaly Detection

(N)LME, MLP, CNN, AE, GAN

Sentiment Analysis

(N)LME, MLP, CNN, AE, GAN

Text Generation

CNN, VAE, GAN

Handwriting Prediction

(N)LME, CNN, VAE, GAN

Music Generation

CNN, VAE, GAN

Multi-Step Time Series Forecasting

TS, RNN

Text Summarization

RNN

Program Execution

CNN, AE

AE: Autoencoder
CNN: Convolutional Neural Network
GAN: Generative Adversarial Networks
LME: Linear Mixed-Effect Models
MLP: Multilayer Perceptrons

NLME: Nonlinear Mixed-Effect Models
PDE: Partial Differential Equation
RNN: Recurrent Neural Network
TS: Time Series
VAE: Variational Autoencoders 5
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Multilayer Perceptron Regression

• Time series prediction ←→ Regression problem: xt+1 as a function of xt

   Multilayer Perceptron model

• Long training, hyperparameters to be tuned. . .

• No more efficient than an ARIMA model (or even less)

Airline passengers: Blue=Whole Dataset, Orange=Training, Red=Predictions
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Multilayer Perceptron Regression

• Time series prediction ←→ Regression problem: xt+1 as a function of xt

   Multilayer Perceptron model

• Long training, hyperparameters to be tuned. . .

• No more efficient than an ARIMA model (or even less)

Airline passengers: Blue=Whole Dataset, Orange=Training, Red=Predictions

Do not do
that!
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Long Short-Term Memory Networks for
Time Series Forecasting

2.1 Recurrent Neural Networks
2.2 Long Short Term Memory Neural Networks
2.3 Time Series Forecasting Using LSTM Networks



Recurrent Neural Networks (RNN) Reminders

• Idea: Make use of sequential information;
“Memory” → capture information about what has been calculated so far

• Different types of RNN’s:
• One-to-one e.g. Image classification,
• One-to-Many e.g. Image captioning,
• Many-to-One e.g. Sentiment analysis,
• Many-to-Many e.g. Machine Translation;

• Ot output state, ht current time stamp, ht−1 previous time stamp, and xt

passed as input state
Whh weight at previous hidden state, Whx weight at current input state, and
Why weight at the output state

ht = tanh (Whhht−1 +Whxxt) and yt = Whyht
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Recurrent Neural Networks (RNN) Reminders

While backpropogating you may get 2 types of issues:

• Vanishing Gradient,
• Exploding Gradient.

Remarks:

• Training an RNN is a very difficult task,
• It cannot process very long sequences if using tanh or Relu as an activation
function.
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Long Short Term Memory Neural Networks

“Special kind of RNN’s, capable of learning long-term dependencies.”

LSTM had a three step process: Forget gate, Input gate, Output gate.

Remark: A Blog on LSTM’s with nice visualization:
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
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Forget Gate

“Decides how much of the past you should remember.”

ft = σ (Wf · [ht−1, xt] + bf )

Input:
• Previous state ht−1,
• Content input xt.

Output:
• A number between 0 (omit this)
and 1 (keep this)for each
number in the cell state Ct−1.
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Update Gate or Input Gate:

“Decides how much of this unit is added to the current state.”

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

Input:
• Previous state ht−1,
• Content input xt.

Output:
• Cell state Ct.

Remarks
• Sigmoid decides which values to
let through 0,1;
• tanh gives weightage to the
values which are passed deciding
their level of importance ranging
from -1 to 1.
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Output Gate

“Decides which part of the current cell makes it to the output.”

ot = σ (Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Input:
• Previous state ht−1,
• Content input xt,
• Cell stateCt,

Output:
• Current state ht.
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Long Short-Term Memory Networks for
Time Series Forecasting

2.1 Recurrent Neural Networks
2.2 Long Short Term Memory Neural Networks
2.3 Time Series Forecasting Using LSTM Networks



Time Series Forecasting Using LSTM Networks

See “Practical Work 5 – Time Series Forecasting Using LSTM Networks”

• Strength of LSTM for time series forecasting,
• a non-exhaustive list of different variants of the vanilla LSTM.

Baughman, Haas, Wolski, Foster, Chard. Predicting Amazon Spot Prices with LSTM Networks. 2018.
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Deep Learning for Anomaly Detection

3.1 Problem Nature and Challenges
3.2 Addressing the Challenges with Deep Anomaly

Detection



Anomaly Detection

Anomaly detection: Outlier detection or Novelty detection.

Broad domains of applications: risk management, compliance, security, financial
surveillance, health and medical risk, AI safety, etc.

Major Problem Complexities:
• Unknownness,
• Heterogeneous anomaly classes,
• Rarity and class imbalance,
• Diverse types of anomaly:

(i) Point anomalies, (ii) Conditional
anomalies, (iii) Group anomalies.

Pang, Shen, Cao and van den Hengel. Deep learning for anomaly detection: A review.
2020.
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Largely Unsolved Challenges in Anomaly Detection

1. Low anomaly detection recall rate;

2. Anomaly detection in high-dimensional and/or not-independent data;

3. Data-efficient learning of normality/abnormality;

4. Noise-resilient anomaly detection;

5. Detection of complex anomalies;

6. Anomaly explanation.
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Weakly/semi-supervised anomaly detection assume clean labeled data;

5. Detection of complex anomalies:
Most methods are for point anomalies
and focus on detect anomalies from single data sources;

6. Anomaly explanation:
Risks if anomaly detection models directly used as black-box models
→ Explanation + Human expert.
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Deep Learning for Anomaly Detection

3.1 Problem Nature and Challenges
3.2 Addressing the Challenges with Deep Anomaly

Detection



Traditional vs. Deep Learning Methods in Anomaly Detection

Deep methods:

• Aims: learning feature representations or anomaly scores via neural networks
• End-to-end optimization;
• Learning of representations specifically tailored for anomaly detection;
• Learning intricate structures and relations from diverse types of data;

High-dimensional data, image data, video data, graph data, etc.

• Many effective and easy-to-use network architectures;

Traditional Deep

End-to-end Optimization × X

Tailored Representation Learning × X

Intricate Relation Learning Weak Strong
Heterogeneity Handling Weak Strong
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Deep Anomaly Detection

Dataset: Let X = {x1, x2, . . . , xn} with xi ∈ Rd.
Let Z ∈ Rk, k � n, be a representation space.

Deep anomaly detection aims at:

• learning a feature representation mapping function φ : X → Z
• OR an anomaly score learning function τ : X → R

so that:

• anomalies easily differentiated from normal data instances in the space induced
by φ or τ ,
• where φ and τ are neural networks with h ∈ N hidden layers,
• weight matrices: Θ = {M1,M2, . . . ,Mh}.
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Hierarchical Taxonomy of Deep Anomaly Detection Methods

Proposed by Pang, Shen, Cao, van den Hengel (2020)
Taxonomy of current deep anomaly detection techniques
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Deep Learning For Feature Extraction

• Goal : Extract low-dimensional feature
representations from high-dimensional
and/or non-linearly separable data;

• The deep learning components work
purely as dimensionality reduction only;

• f : unrelated to φ scoring method, applied onto the new space;

• Compared to PCA or random projection, better capability in extracting
semantic-rich features and non-linear feature relations;
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Learning Feature Representations of Normality

• Goal: Couple feature learning with anomaly scoringin
some ways;

• Two groups: generic feature learning
and anomaly measure-dependent feature learning.

• Generic Normality Feature Learning: Learn
representations through generic methods not primarily
designed for anomaly detection, but by forcing them to
capture some key underlying data regularities;
Autoencoders, Generative adversarial networks, Predictability modeling,
Self-supervised classification

• Anomaly Measure-dependent Feature Learning: Learning feature
representations specifically optimized for one particular anomaly measure.
Distance-based measures, One-class classification measures, Clustering-based measures
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End-to-end Anomaly Score Learning

• Goal: Learning scalar anomaly scores in an end-to-end
fashion;

• The anomaly scoring is not dependent on existing
anomaly measures; it has a neural network that directly
learns the anomaly scores;

• Novel loss functions are often required to drive the
anomaly scoring network.

• Ranking models, Prior-driven models, Softmax models, End-to-end one-class
classification

Suggested list of tools & datasets for anomaly detection on time-series data:
https://github.com/rob-med/awesome-TS-anomaly-detection
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To Go Further: Deep Learning for Time Series Classification

• Deep learning for time series classification: A review
Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar
& Pierre-Alain Muller
• Why dedicated algorithms for time series?
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Conclusion

• Neural Networks and especially Recurrent Neural Networks have proven their
efficiency;

• Be careful to choose the right method;

• A burgeoning and rapidly growing field of research.
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