Machine Learning Techniques for Longitudinal Data Introduction to Mixed Models

M2 Data Science & Artificial Intelligence

Juliette Chevallier

January 21, 2021

Introduction

- 1.1 Times Series vs Longitudinal Data Analysis
- 1.2 Some Reminders About Time Series Analysis
- 1.3 Linear Regression Models

- Repeated observations of the same variables over time
 - ightarrow d features observed k times

- Repeated observations of the same variables over time
 - ightarrow d features observed k times

Times Series Analysis	Longidudinal Data Analysis
High k , Low d	Low k , High d

- Repeated observations of the same variables over time
 - ightarrow d features observed k times

Times Series Analysis	Longidudinal Data Analysis
High k , Low d	Low k , High d
• Forecasting future time points;	
 Modeling various cyclical and trend processes; 	
Describing temporal dynamics in great detail;	
Specific interest: unemployment rate, stock market indices, etc.	Orange Tree Growth
18/2010 to 01/20/2021 th 12h 14d for ten 2m by (all	200 - O Tree 1 O Tree 2 O Tree 3 O Tree 4

- Repeated observations of the same variables over time
 - $\rightarrow d$ features observed k times

	Times Series Analysis		
High k , Low d			
•	Forecasting future ti	me points;	
•	Modeling various <i>cyc</i> processes;	clical and trend	
•	 Describing temporal dynamics in great detail; 		
 Specific interest: unemployment rate, stock market indices, etc. 			
07/18	8/2010 to 01/20/2021	th 12h 1d tw 1m 3m tv all	

Longidudinal Data Analysis Low k, High d

Make inferences about the

population;

- Fairly general temporal processes: growth, disease monitoring, etc.;
- Variation in change processes: (early) detection for Alzheimer's disease.

Introduction

- 1.1 Times Series vs Longitudinal Data Analysis
- 1.2 Some Reminders About Time Series Analysis
- 1.3 Linear Regression Models

- **Decomposition**: trend m_t , seasonality s_t and (stochastic) reminder Z_t ;

$$Y_t = m_t + s_t + Z_t$$
 , where $t \in T \subset \mathbb{Z}$ or \mathbb{N}

- **Decomposition**: trend m_t , seasonality s_t and (stochastic) reminder Z_t ;

$$Y_t = m_t + s_t + Z_t$$
, where $t \in T \subset \mathbb{Z}$ or \mathbb{N}

- **Trend**: Long-term variations, Most often *polynomial*:
 - Differentiation to determine the degree,
 - Linear regression for the coefficients;

Otherwise, more complicated estimation procedure;

 Detrending: Moving average, exponential smoothing, Holt-Winters smoothing, etc.;

- **Decomposition**: trend m_t , seasonality s_t and (stochastic) reminder Z_t ;

$$Y_t = m_t + s_t + Z_t$$
 , where $t \in T \subset \mathbb{Z}$ or \mathbb{N}

- **Trend**: Long-term variations, Most often *polynomial*:
 - Differentiation to determine the degree,
 - Linear regression for the coefficients;

Otherwise, more complicated estimation procedure;

- Detrending: Moving average, exponential smoothing, Holt-Winters smoothing, etc.;
- Seasonality: Periodic deterministic function,
 Combination of sinusoidal functions, Indicator functions;

$$Y_t = m_t + s_t + Z_t$$
 , where $t \in T \subset \mathbb{Z}$ or \mathbb{N}

Reminder: Stationary process (Dickey Fuller or KPSS tests),
 Auto Regressive Moving Average (ARMA) models.

Introduction

- 1.1 Times Series vs Longitudinal Data Analysis
- 1.2 Some Reminders About Time Series Analysis
- 1.3 Linear Regression Models

Braking distance of a car according to its speed

Observations: (t_j, y_j) , where $j \in [1, k]$;

Braking distance of a car according to its speed

Observations: (t_j, y_j) , where $j \in [\![1, k]\!]$;

Idea: $y_j \simeq \theta_0^* + \theta_1^* t_j$;

Braking distance of a car according to its speed

Observations: (t_j, y_j) , where $j \in [1, k]$;

Idea: $y_j \simeq \theta_0^* + \theta_1^* t_j$;

Probabilistic formulation:

$$y_j = \theta_0^* + \theta_1^* t_j + \varepsilon_j$$
, where $\varepsilon_j \sim \mathcal{N}(0, \sigma^2)$;

Braking distance of a car according to its speed

Observations: (t_j, y_j) , where $j \in [1, k]$;

Idea: $y_j \simeq \theta_0^* + \theta_1^* t_j$;

Probabilistic formulation:

$$y_j|\theta_0, \theta_1, \sigma \sim \mathcal{N}(\theta_0^* + \theta_1^* t_j, \sigma^2)$$

Maximum likelihood estimator:

$$(\hat{\theta}_0, \hat{\theta}_1) \in \underset{(\theta_0, \theta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{j=1}^k |y_j - \theta_0 - \theta_1 t_j|^2$$

 \longrightarrow Closed form if $(t_j)_j$ non-constant.

Multidimensional Least Squares

Volume of trees according to their height/circumference

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \theta = \begin{pmatrix} \theta_0 \\ \vdots \\ \theta_d \end{pmatrix} A = \begin{pmatrix} 1 & t_1 & t_1^2 & \dots & t_1^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_n & t_n^2 & \dots & t_n^d \end{pmatrix}$$

$$y \sim \mathcal{N}(A\theta^*, \sigma^2 I_d)$$

Maximum likelihood estimator: $\hat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^{d+1}} \|y - A\theta\|_2^2$.

$$\longrightarrow$$
 Closed form if tAA is invertible : $\theta^* = ({}^tAA)^{-1} {}^tAy$

Remark: Go check http://mfviz.com/hierarchical-models/ for a visual explanation of hierarchical modeling

Linear Regression Assumptions

- Linearity...
- Normality, especially for confidence intervals and significance tests and small sample size (cf. central limit theorem otherwise);
- Homogeneity of variance (Homoscedasticity), as above;
- Independence: errors in the model is not related to each other/

Remark: Generalized linear model,

$$y \sim q(\theta(t))$$

for the parameter $\boldsymbol{\theta}$ and some distribution \boldsymbol{q}

Mixed-Effect Models

2.1 Linear Mixed-Effect Models

- 2.2 Nonlinear Mixed-Effect Models
- 2.3 Statistical Inference for Mixed Effects Models

Extend Traditional Linear Models

Real world data:

- complex and messy,
- highly structured,
- may have different grouping factors: populations, species, sites, gender, etc.

Basic idea: Two different types of effects:

- fixed effects shared by all of the individuals in the population,
- random effects specific to each individual.

Observation = Fixed Effect + Random Effect + Error

Linear Mixed Effect Model (LME)

Dataset: Repeated observations of a phenomenon $(t_i, y_i) \in \mathbb{R}^{k_i} \times \mathbb{R}^{k_i}$, $t_i = (t_{i,j})_{j \in [\![1,k_i]\!]}$, $y_i = (y_{i,j})_{j \in [\![1,k_i]\!]}$, $i \in [\![1,n]\!]$.

Laird and Ware (1982) : $y_i = H_i^{lpha} \frac{\alpha}{\alpha} + H_i^{eta} \beta_i + arepsilon_i$

- $\varepsilon_i \sim \mathcal{N}(0, \Sigma)$, $\Sigma \in \mathcal{S}_{k_i(\mathbb{R})}$,
- For each $i \in [1, n]$, $H_i^{\alpha} \in \mathcal{M}_{k_i, p_{\alpha}}(\mathbb{R})$ and $H_i^{\beta} \in \mathcal{M}_{k_i, p_{\beta}}(\mathbb{R})$,
- Equivalent writing: $y_i \sim \mathcal{N}(H_i^{\alpha} \alpha + H_i^{\beta} \beta_i, \Sigma)$

The Rats Example

Observations: 30 young rats i, weights $y_{i,j}$ measured weekly for five weeks j.

Individual vs. population growth:

Three possible analysis

Each rat has its own line, no population-level study

$$y_{i,j} \sim \mathcal{N}\left(a_i t_{i,j} + b_i, \sigma^2\right)$$

All rats follow the same line, no consideration of individuals

$$y_{i,j} \sim \mathcal{N}\left(\overline{a}t_{i,j} + \overline{b}, \sigma^2\right)$$

Compromise: Each rat has its own line, but they come from a joint distribution.

Random Intercept

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\bar{a}t_{i,j} + (\bar{b} + b_i), \sigma^2\right) \\ b_i \sim \mathcal{N}(0, \tau^2), \quad \tau \in \mathbb{R}^+ \end{cases}$$

Random Intercept

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\overline{a}t_{i,j} + (\overline{b} + b_i), \sigma^2\right) \\ b_i \sim \mathcal{N}(0, \tau^2), \quad \tau \in \mathbb{R}^+ \end{cases}$$

A hierarchical model:

- Observation: y,
- Latent variable: b_i ,
- Parameters: $\theta = (\bar{a}, \bar{b}, \tau^2, \sigma^2)$,

Credit: DOI: 10.7717/peeri.4794/fig-1

Random Intercept

Random Intercept and Slope

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\overline{a}t_{i,j} + (\overline{b} + b_i), \sigma^2\right) \\ b_i \sim \mathcal{N}(0, \tau^2), \quad \tau \in \mathbb{R}^+ \end{cases}$$

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\left(\bar{a} + a_i\right)t_{i,j} + \left(\bar{b} + b_i\right), \sigma^2\right) \\ \left(a_i, b_i\right) \sim \mathcal{N}(0, \Sigma), \quad \Sigma \in \mathcal{S}_2(\mathbb{R}) \end{cases}$$

A hierarchical model:

• Observation: y,

• Latent variable: b_i ,

• Parameters: $\theta = (\bar{a}, \bar{b}, \tau^2, \sigma^2)$,

Random Intercept

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\overline{a}t_{i,j} + (\overline{b} + b_i), \sigma^2\right) \\ b_i \sim \mathcal{N}(0, \tau^2), \quad \tau \in \mathbb{R}^+ \end{cases}$$

A hierarchical model:

• Observation: y,

• Latent variable: b_i ,

• Parameters: $\theta = (\bar{a}, \bar{b}, \tau^2, \sigma^2)$,

Random Intercept and Slope

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\left(\overline{a} + a_i\right)t_{i,j} + \left(\overline{b} + b_i\right), \sigma^2\right) \\ (a_i, b_i) \sim \mathcal{N}(0, \Sigma), \quad \Sigma \in \mathcal{S}_2(\mathbb{R}) \end{cases}$$

A hierarchical model:

Observation: y,

• Latent variables: (a_i, b_i) ,

• Parameters: $\theta = (\bar{a}, \bar{b}, \Sigma, \sigma^2)$,

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\left(\overline{a} + a_i\right)t_{i,j} + \left(\overline{b} + b_i\right), \sigma^2\right) \\ (a_i, b_i) \sim \mathcal{N}(0, \Sigma) \end{cases}, \qquad \Sigma = \begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_2 \end{pmatrix} \in \mathcal{S}_2(\mathbb{R})$$

Remark:

$$\begin{cases} \mathcal{V}ar(y_{i,j}) = \Sigma_1^2 + 2\Sigma_{12} t_{i,j} + \Sigma_2^2 t_{i,j}^2 + \sigma^2; \\ \mathcal{C}ov(y_{i,j}, y_{i,k}) = \Sigma_1^2 + \Sigma_{12} (t_{i,j} + t_{i,k}) + \Sigma_2^2 t_{i,j} t_{i,k}; \\ \mathcal{C}ov(y_{i,j}, y_{\ell,k}) = 0. \end{cases}$$

- Within person, samples are correlated,
- Between persons samples are uncorrelated,
- Constant correlations within person for random intercept model,
 Complex correlations possible with random slope (e.g. distant in time)

Mixed-Effect Models

- 2.1 Linear Mixed-Effect Models
- 2.2 Nonlinear Mixed-Effect Models
- 2.3 Statistical Inference for Mixed Effects Models

Nonlinear Mixed-Effect Models (NLME)

Dataset: Repeated observations of a phenomenon $(t_i, y_i) \in \mathbb{R}^{k_i} \times \mathbb{R}^{k_i}$, $t_i = (t_{i,j})_{j \in [\![1,k_i]\!]}$, $y_i = (y_{i,j})_{j \in [\![1,k_i]\!]}$, $i \in [\![1,n]\!]$.

Sheiner and Beal (1980), Bates and Watts (1988): $\forall i \in [1, n], \forall j \in [1, k_i],$

$$\begin{cases} y_{i,j} = f(z_i; t_{i,j}) + \varepsilon_{i,j} \\ z_i = H_i^{\alpha} \alpha + H_i^{\beta} \beta_i \end{cases}$$

- $arepsilon_{i,j} \sim \mathcal{N}(0,\sigma^2)$, $\sigma \in \mathbb{R}^+$, $z \in \mathbb{R}^{p_z}$,
- For each $i \in [1, n]$, $H_i^{\alpha} \in \mathcal{M}_{k_i, p_{\alpha}}(\mathbb{R})$ and $H_i^{\beta} \in \mathcal{M}_{k_i, p_{\beta}}(\mathbb{R})$,
- f nonlinear function,
- Equivalent writing: $y_{i,j} \sim \mathcal{N}\left(f(H_i^{\alpha} \alpha + H_i^{\beta} \beta_i, t_{i,j}), \sigma^2\right)$.

 \rightarrow A multitude of (N)LME models: As many as there are situations to study.

Time alignment in dimension 1

Random Intercept and Random Slope Model:

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\left(\bar{a} + a_i\right)(t_{i,j} - t_0) + \left(\bar{b} + b_i\right), \sigma^2\right), \text{ where } t_0 \in \mathbb{R} \text{ reference time,} \\ \theta = \left(\bar{a}, \bar{b}, \Sigma, \sigma^2\right) \end{cases}$$

Without obvious reference time: Estimate t_0 as a parameter of the model

$$\begin{cases} y_{i,j} \sim \mathcal{N}\left(\bar{a}a_i(t_{i,j} - t_0 - \tau_i) + \bar{b}\,, \sigma^2\right), \text{ where } t_0 \in \mathbb{R} \text{ reference time,} \\ \theta = (\bar{a}, \bar{b}, t_0, \Sigma, \sigma^2) \end{cases}$$

A Multitude of (N)LME Models

- Model for processing non-scalar data: matrices, anatomical shapes, etc.
- Bayesian framework → Prediction, new subject

The ADNI data set. Representative shape evolution

Mixed-Effect Models

- 2.1 Linear Mixed-Effect Models
- 2.2 Nonlinear Mixed-Effect Models
- 2.3 Statistical Inference for Mixed Effects Models

The Expectation-Maximization algorithm

Let
$$\mathcal{Y} \subset \mathbb{R}^{n_y}$$
, $\mathcal{Z} \subset \mathbb{R}^{n_z}$ and $\Theta \subset \mathbb{R}^{n_\theta}$.

MLE: Given
$$y_1^n = (y_1, \dots, y_n) \in \mathcal{Y}^n$$
,

$$\widehat{\theta}_n^{MLE} \in \mathop{\mathrm{argmax}}_{\theta \in \Theta} q \big(y_1^n; \theta \big)$$

E-step: Conditional expected log-likelihood

$$Q(\theta|\theta_k) = \int_{\mathcal{Z}} \log q(y, z; \theta) \, q(z|y; \theta_k) \, d\mu(z);$$

M-step: Maximize
$$Q(\cdot | \theta_k)$$
 in Θ :

$$\theta_{k+1} \in \operatorname{argmax} Q(\theta|\theta_k)$$
 .

The Expectation-Maximization algorithm

Let $\mathcal{V} \subset \mathbb{R}^{n_y}$. $\mathcal{Z} \subset \mathbb{R}^{n_z}$ and $\Theta \subset \mathbb{R}^{n_\theta}$. **MLE:** Given $y_1^n = (y_1, \ldots, y_n) \in \mathcal{Y}^n$,

WILE: Given
$$y_1^{\cdot \cdot} = (y_1, \dots, y_n) \in \mathcal{Y}^{\cdot \cdot},$$

$$\widehat{\theta}_n^{MLE} \in \operatorname{argmax}_{\theta \in \Theta} q(y_1^n; \theta)$$

E-step: Conditional expected log-likelihood

$$Q(\theta|\theta_k) = \int_{\mathcal{Z}} \log q(y, z; \theta) \, q(z|y; \theta_k) \, d\mu(z);$$

M-step: Maximize $Q(\cdot | \theta_k)$ in Θ :

$$heta_{k+1} \in \operatorname{argmax}_{0 = 0} Q(heta| heta_k)$$
 in Θ :

Convergence for curved exponential families

(M1) $\exists S : \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \to \mathcal{S} \subset \mathbb{R}^{n_s}$ Borel function $Conv(S) \subset S$, $\int_{\mathcal{Z}} ||S(y,z)|| q(z|y;\theta) d\mu(z) < +\infty$

$$q(y,z;\theta) = \exp\left(-\psi(\theta) + \langle S(y,z) \mid \phi(\theta) \rangle\right)$$

The Expectation-Maximization algorithm

Let $\mathcal{Y} \subset \mathbb{R}^{n_y}$, $\mathcal{Z} \subset \mathbb{R}^{n_z}$ and $\Theta \subset \mathbb{R}^{n_\theta}$. **MLE:** Given $y_1^n = (y_1, \dots, y_n) \in \mathcal{Y}^n$,

$$\widehat{\theta}_n^{MLE} \in \operatorname{argmax} q(y_1^n; \theta)$$

E-step: Conditional expected log-likelihood

 $Q(\theta|\theta_k) = \int_{\mathcal{Z}} \log q(y, z; \theta) \, q(z|y; \theta_k) \, d\mu(z) \, ;$

M-step: Maximize $Q(\cdot | \theta_k)$ in Θ : $\theta_{k+1} \in \operatorname{argmax} Q(\theta|\theta_k)$.

Convergence for curved exponential families

(M1) $\exists S : \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \to \mathcal{S} \subset \mathbb{R}^{n_s}$ Borel function $Conv(S) \subset S$, $\int_{\mathcal{Z}} ||S(y,z)|| q(z|y;\theta) d\mu(z) < +\infty$

$$q(y, z; \theta) = \exp(-\psi(\theta) + \langle S(y, z) | \phi(\theta) \rangle)$$

(M2) $\psi \in \mathcal{C}^2(\Theta, \mathbb{R})$ and $\phi \in \mathcal{C}^2(\Theta, \mathcal{S})$;

(M3)
$$\theta \mapsto \int_{\mathcal{Z}} S(y,z) q(z|y;\theta) \, \mathrm{d}\mu(z) \in \mathcal{C}^1(\Theta,\mathcal{S});$$

(M4) $\ell \colon \theta \mapsto \int_{\mathcal{Z}} q(y,z;\theta) \, \mathrm{d}\mu(z) \in \mathcal{C}^1(\Theta,\mathbb{R})$ and $\partial_{\theta} \int_{\mathcal{Z}} q(y, z; \theta) d\mu(z) = \int_{\mathcal{Z}} \partial_{\theta} q(y, z; \theta) d\mu(z);$

(M5)
$$\exists \hat{\theta} \in C^1(\theta, S)$$
 s.t.

(M2)
$$\psi \in \mathcal{C}^2(\Theta,\mathbb{R})$$
 and $\phi \in \mathcal{C}^2(\Theta,\mathcal{S})$;

(M5)
$$\exists \hat{\theta} \in C^1(\theta, \mathcal{S}) \text{ s.t.}$$

 $\psi(\hat{\theta}(s)) + \langle s | \phi(\hat{\theta}(s)) \rangle \geqslant \psi(\theta) + \langle s | \phi(\theta) \rangle$.

16

Convergence EM – Delyon, Lavielle,

Moulines (1999) Assume (M1-5) and that $(\theta_k)_{k\in\mathbb{N}}$ remains

in a compact subset. Then, for any initial point,
$$\lim_{k\to\infty}\,d(\theta_k,\mathcal{L})=0\,,$$

where $\mathcal{L}=\{\,\theta\in\Theta\,|\,\partial_{\theta}\ell(\theta)=0\,\}$.

E-step: Conditional expected log-likelihood

 $Q(\theta|\theta_k) = \int_{\mathcal{Z}} \log q(y, z; \theta) q(z|y; \theta_k) d\mu(z);$

M-step: Maximize $Q(\cdot | \theta_k)$ in Θ : $\theta_{k+1} \in \operatorname{argmax} Q(\theta | \theta_k)$.

Convergence for curved exponential families $(\mathbf{M1}) \ \exists \, S: \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \to \mathcal{S} \subset \mathbb{R}^{n_s} \ \text{Borel function}$

 $Conv(S) \subset \mathcal{S}, \ \int_{\mathcal{Z}} ||S(y,z)|| \ q(z|y;\theta) \ d\mu(z) < +\infty$

$$q(y, z; \theta) = \exp(-\psi(\theta) + \langle S(y, z) | \phi(\theta) \rangle)$$

(M2)
$$\psi \in \mathcal{C}^2(\Theta,\mathbb{R})$$
 and $\phi \in \mathcal{C}^2(\Theta,\mathcal{S})$;

(M3)
$$\theta \mapsto \int_{\mathcal{Z}} S(y,z) q(z|y;\theta) \, \mathrm{d}\mu(z) \in \mathcal{C}^1(\Theta,\mathcal{S});$$

(M4) $\ell \colon \theta \mapsto \int_{\mathcal{Z}} q(y, z; \theta) \, \mathrm{d}\mu(z) \in \mathcal{C}^1(\Theta, \mathbb{R})$ and $\partial_{\theta} \int_{\mathcal{Z}} q(y, z; \theta) \, \mathrm{d}\mu(z) = \int_{\mathcal{Z}} \partial_{\theta} q(y, z; \theta) \, \mathrm{d}\mu(z)$;

(M5)
$$\exists \hat{\theta} \in \mathcal{C}^1(\theta, \mathcal{S})$$
 s.t.

(M5)
$$\exists \hat{\theta} \in C^1(\theta, S)$$
 s.t.
 $\psi(\hat{\theta}(s)) + \langle s | \phi(\hat{\theta}(s)) \rangle \geqslant \psi(\theta) + \langle s | \phi(\theta) \rangle$.

Convergence EM – Delyon, Lavielle, Moulines (1999)

Assume (M1-5) and that $(\theta_k)_{k\in\mathbb{N}}$ remains in a compact subset. Then, for any initial point,

$$\lim_{k\to\infty} d(\theta_k,\mathcal{L}) = 0 \,,$$
 where $\mathcal{L} = \{ \, \theta \in \Theta \, | \, \partial_{\theta} \ell(\theta) = 0 \, \} \,.$

E-step: Conditional expected log-likelihood

$$Q(\theta|\theta_k) = \int_{\mathcal{Z}} \log q(y, z; \theta) \, q(z|y; \theta_k) \, d\mu(z);$$

M-step: Maximize $Q(\cdot | \theta_k)$ in Θ :

$$\theta_{k+1} \in \underset{\theta \in \Theta}{\operatorname{argmax}} \ Q(\theta|\theta_k) \,.$$

Convergence for curved exponential families

Intuition: Jensen inequality

+ Maximize a lower bound at each step

Variants of the EM Algorithm

Speeding-up ≺ EM

Variants of the EM Algorithm

M-step

ΕM

GEM – Generalized EM

E-step: Compute $Q(\theta|\theta_k) = \mathbb{E} [\log q(Z|y,\theta_k)]$;

M-step: Find
$$\theta_{k+1} \in \Theta$$
 s.t.

$$Q(\theta_{k+1}|\theta_k) \geqslant Q(\theta_k|\theta_k),$$

(Delyon et al., 1999) See also Gradient EM (Lange, 1995)

Variants of the EM Algorithm

See also Gradient EM (Lange, 1995)

M-step: Find
$$\theta_{k+1} \in \Theta$$
 s.t.

S-step: Draw an unobserved sample
$$z_k$$
 from $a(\cdot|w,\theta_k)$:

S-step: Draw
$$m$$
 samples $z_k^j \sim q(\cdot|y;\theta_k)$;

$$z_k^j \sim q(\,\cdot\,|y; heta_k)\,;$$

(Celeux and Diebolt, 1985)

$$Q_{k+1}$$
:

M-step: Maximize Q_{k+1} .

(Wei and Tanner, 1990)

E-step: Monte-Carlo estim.
$$Q_k(\theta) = \frac{1}{m} \sum_{i=1}^m \log q(y, z_k^j; \theta) \,;$$

$$Q(\theta|\theta_k) = \mathbb{E}\left[\log q(Z|y,\theta_k)\right];$$

 $Q(\theta_{k+1}|\theta_k) \geqslant Q(\theta_k|\theta_k),$

(Delyon et al., 1999)

E-step: Compute

sample
$$z_k$$
 from $q(\,\cdot\,|y; heta_k)$;

M-step: Maximize
$$Q_{k+1}$$
:

M-step: Maximize
$$Q_{k+1}$$
: $\theta_{k+1} \in \operatorname{argmax} Q_{k+1}(\theta)$.

$$_{1}^{k+1}$$
:

Monte-Carlo est
$$\begin{array}{ccc}
1 & \sum_{1 \leq m \leq n} a_{n}(n)
\end{array}$$

The Stochastic Approximation EM Algorithm

The SAEM algorithm

- Idea: Replace the E-step by a stochastic approximation,
- Sequence of positive step-size $(\gamma_k)_{k\in\mathbb{N}}$.

S-step: Draw
$$z_k \sim q(\cdot|y;\theta_k)$$
;

SA-step: Update $Q_k(\theta)$ as

$$Q_{k+1}(\theta) = Q_k(\theta) + \gamma_k (\log q(y, z_k; \theta) - Q_k(\theta));$$

M-step: Maximize Q_{k+1} in Θ :

$$\theta_{k+1} \in \operatorname{argmax} Q_{k+1}(\theta)$$
.

The Stochastic Approximation EM Algorithm

The SAEM algorithm

- Idea: Replace the E-step by a stochastic
- Sequence of positive step-size (γ_k)_{k∈N}.
- **S-step:** Draw $z_k \sim q(\cdot | y; \theta_k)$;

5-step: Draw
$$z_k \sim q(\cdot|y;\theta_k)$$

SA-step: Update $Q_k(\theta)$ as

approximation,

$$Q_{k+1}(\theta) = Q_k(\theta) + \gamma_k (\log q(y, z_k; \theta) - Q_k(\theta));$$

M-step: Maximize Q_{k+1} in Θ :

$$heta_{k+1} \in \operatorname{argmax} Q_{k+1}(heta)$$
 .

Convergence for curved exponential families

(SAEM2)
$$\psi \in \mathcal{C}^{n_s}(\Theta, \mathbb{R})$$
 and $\phi \in \mathcal{C}^{n_s}(\Theta, \mathcal{S})$;

(SAEM3)
$$\mathbb{E}[\phi(Z_{k+1})|\mathcal{F}_k] = \int_{\mathcal{F}} \phi(z)q(z|y;\theta_k) \,\mathrm{d}\mu(z)$$

(SAEM4)
$$\int_{\mathbb{Z}} \|S(y,z)\|^2 \, q(y,z;\theta) \, \mathrm{d}\mu(z) < +\infty$$
.

The Stochastic Approximation EM Algorithm

Cvgce SAEM – Delyon et al. (1999) Assume (M1-5), (SAEM1-4) and that

$$(s_k)_{k\in\mathbb{N}}$$
 remains in a compact subset. Then, for any initial point,

 $\lim_{k\to\infty} d(\theta_k, \mathcal{L}) = 0,$ where $\mathcal{L} = \{ \theta \in \Theta \mid \partial_{\theta} \ell(\theta) = 0 \}$.

S-step: Draw
$$z_k \sim q(\,\cdot\,|y;\theta_k)$$
 ;

SA-step: Update
$$s_k(\theta)$$
 as

 $s_{k+1}(\theta) = s_k(\theta) + \gamma_k(S(y, z_k) - s_k(\theta));$

M-step: Maximize
$$Q_{k+1}$$
 in

M-step: Maximize Q_{k+1} in Θ :

 $\theta_{k+1} \in \operatorname{argmax} Q_{k+1}(\theta)$.

(SAEM1) $\gamma_k \in [0,1], \sum_{k=1}^\infty \gamma_k = \infty \text{ and } \sum_{k=1}^\infty \gamma_k^2 < \infty$;

(SAEM2)
$$\psi \in \mathcal{C}^{n_s}(\Theta, \mathbb{R})$$
 and $\phi \in \mathcal{C}^{n_s}(\Theta, \mathcal{S})$;

(Allassonnière et al., 2010)

(SAEM3)
$$\mathbb{E}\big[\phi(Z_{k+1})\big|\mathcal{F}_k\big] = \int_{\mathcal{Z}} \phi(z)q(z|y;\theta_k)\,\mathrm{d}\mu(z)$$
 : (SAEM4) $\int_{\mathcal{Z}} \|S(y,z)\|^2\,q(y,z;\theta)\,\mathrm{d}\mu(z) < +\infty$.

Keep Home Message

- Low sample size, many features;
- Highly structured data, grouping factors such as species, gender, etc.;
- Two different types of effects: Fixed vs random effects;
- Bayesian frameworks allows prediction;
- Estimation performed through the EM algorithm (or its variants).