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Introduction

1.1 Times Series vs Longitudinal Data Analysis



Times Series vs Longitudinal Data Analysis

® Repeated observations of the same variables over time
— d features observed k times
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Times Series vs Longitudinal Data Analysis

® Repeated observations of the same variables over time
— d features observed k times

Times Series Analysis Longidudinal Data Analysis

High k, Low d Low k, High d

e Forecasting future time points;

e Modeling various cyclical and trend
processes;

e Describing temporal dynamics in
great detail;

e Specific interest: unemployment rate,
stock market indices, etc.

Orange Tree Growth
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Times Series vs Longitudinal Data Analysis

Repeated observations of the same variables over time

— d features observed k times

Times Series Analysis

Longidudinal Data Analysis

High k, Low d

Low k, High d

Forecasting future time points;

Modeling various cyclical and trend
processes;

Describing temporal dynamics in
great detail;

Specific interest: unemployment rate,
stock market indices, etc.

owz012021

Make inferences about the
population;

Fairly general temporal processes:
growth, disease monitoring, etc.;

Variation in change processes: (early)
detection for Alzheimer's disease.

Orange Tree Growth
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Introduction

1.2 Some Reminders About Time Series Analysis
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® Assumption: the observed data is a realization of a stochastic process
— Properties of stochastic processes: Stationarity, ergodicity (Hidden
Markov Model, HMM), etc.;
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Some

Reminders About Time Series Analysis

Assumption: the observed data is a realization of a stochastic process
— Properties of stochastic processes: Stationarity, ergodicity (Hidden
Markov Model, HMM), etc.;

Decomposition: trend my, seasonality s; and reminder Z;;

Ye =mi+st+ 2 , whereteT CZorN

Trend: Long-term variations, Most often polynomial:
e Differentiation to determine the degree,
e Linear regression for the coefficients;

Otherwise, more complicated estimation procedure;

Detrending: Moving average, exponential smoothing, Holt-Winters
smoothing, etc.;



Some Reminders About Time Series Analysis

® Assumption: the observed data is a realization of a stochastic process
— Properties of stochastic processes: Stationarity, ergodicity (Hidden
Markov Model, HMM), etc.;

® Decomposition: trend my, seasonality s and reminder Z;;

Ye =mi+st+ 2 , whereteT CZorN

® Trend: Long-term variations, Most often polynomial:
e Differentiation to determine the degree,
e Linear regression for the coefficients;

Otherwise, more complicated estimation procedure;

® Detrending: Moving average, exponential smoothing, Holt-Winters
smoothing, etc.;

® Seasonality: Periodic deterministic function,
Combination of sinusoidal functions, Indicator functions;



Some Reminders About Time Series Analysis

Ye=mi+s:+ 2y , whereteT CZorN

® Reminder: Stationary process (Dickey Fuller or KPSS tests),
Auto Regressive Moving Average (ARMA) models.
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Introduction

1.3 Linear Regression Models



One-Dimensional Least Squares

Observations: (¢;,y;), where j € [1, k];

Speed

Braking distance of a car according
to its speed
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Raw data

Observations: (¢;,y;), where j € [1, k];
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One-Dimensional Least Squares

Raw data

. Observations: (t;,y;), where j € [1,k];

Idea: y; ~ 05 + 07t;;

Probabilistic formulation:

= yj‘907013UNN(08 +0th70-2)
Braking distance of a car according
to its speed

Maximum likelihood estimator:

k
(00,6:) € argmin Y " |y; — 6o — Out;]”

2
(60,61)€R? "5

— Closed form if (¢;); non-constant.



Multidimensional Least Squares

2 d
8  ooo O3

1 tn

N o S S

Volume of trees according to
their height/circumference

Maximum likelihood estimator: 0 € argming ga+1 ||y — A6)3.

0" = ("AA)" Ay

— Closed form if *AA is invertible :

Remark: Go check http://mfviz.com/hierarchical-models/ for a visual

explanation of hierarchical modeling


http://mfviz.com/hierarchical-models/

Linear Regression Assumptions

CURVE-FITTING METHODS o Lj i
PND THE MESSAGES THEY SEND Llnearlty'“
. . ® Normality, especially for confidence
/ \~»/ intervals and significance tests and
IR TURTEDAGRD ; small sample size
REGRESSION! LM:,SOI?’PDEM TAPERNG OFF" . . i
oA (cf. central limit theorem otherwise);

Af % ® Homogeneity of variance

(Homoscedasticity), as above;

“LOOK, IT'S GROVING “IM SOPHISTICATED), NOT “TM MAKING A

UNCONTROLLABLY"™ LIKE THOSE BUMBLING SCATTER PLOT BUT
POLYNOMIAL PEOPLE™ I DONT WANT 0!

® Independence: errors in the model is

/ s not related to each other/

0% gt
“I NEED TO CONNECT THESE  “USTEN, SCENCE 15 HARD. “I HAVE A THEORY,
WO UNES, BUT MY FRSTIEA  BUT IM A SERIOUS AND THIS 15 THE ONLY

DIDN'T HAVE ENOUGH MATH"  PERSON DOING MY BEST." DATA I COUD FIND*
Remark: Generalized linear model,

y~ q(6(t)

"I CLICKED "SMOOTH “I HAD AN IDEA FOR HOU/
LINES IN EXCEL” TO CLEAN UP THE DATA.

YU e baraose /| for the parameter 6 and some distribution ¢




Mixed-Effect Models

2.1 Linear Mixed-Effect Models



Extend Traditional Linear Models

Real world data:

® complex and messy,
® highly structured,

® may have different grouping factors: populations, species, sites, gender, etc.

Basic idea: Two different types of effects:

® fixed effects shared by all of the individuals in the population,

® random effects specific to each individual.

Observation = Fixed Effect + Random Effect + Error




Linear Mixed Effect Model (LME)

Dataset: Repeated observations of a phenomenon (t;,y;) € R* x R,

Laird and Ware (1982) : | yi = Ha + H' 3 + <,

® g NN(O,E), Y e Ski(R)’
® For each i € [1,n], HY € My, p, (R) and H] € My, p,(R),

® Equivalent writing: y; ~ N (H{ o + Hiﬁﬁ,-, , )




The Rats Example

Observations: 30 young rats i, weights y; ; measured weekly for five weeks j.

Individual vs. population growth:
Th ree pOSSi bl e ana |ySiS Data and Individual MLE Regression Lines

1. Each rat has its own line, no
population-level study

Yij ~ N (azti,j + b; ,02)

Weight

2. All rats follow the same line, no
consideration of individuals

Yij ~ N (Eltiyj +5702)

10

3. Compromise: Each rat has its own line, Study Day (centered)

but they come from a joint distribution.

— Random Intercept and Random Slope Model




Random Intercept and Random

Random Intercept

Slope Model

Yij ~ N (ﬁt@j + (?)—1— b,-),(fz)
bi ~N(©0,7%), TeRT

Dependent Variable y

Hgrou§

o
Predictor Variable x

Credit: DOI: 10.7717/peerj.4794 /fig-1

11



Random Intercept and Random Slope Model

Random Intercept

Yij ~ N (ﬁt@j + (?)—1— b,-),(fz)
bi ~N(©0,7%), TeRT

A hierarchical model:

® Observation: v,
® | atent variable: b;,

® Parameters: § = (a,b,72,0?),

Dependent Variable y

Predictor Variable x

Credit: DOI: 10.7717/peerj.4794 /fig-1

11



Random Intercept and Random Slope Model

Random Intercept

Random Intercept and Slope

Yij ~ N (ati,j +(b+ bi),(fQ)
bi ~N(©0,7%), TeRT

A hierarchical model:

® QObservation: y,
® | atent variable: b;,

® Parameters: § = (a,b,72,0?),

Dependent Variable y

Predictor Variable x

Credit: DOI: 10.7717/peerj.4794 /fig-1

Yij ~ N ((a + ai)ti; + (B +bi), 0’2)

(aiy b)) ~N(0,%2), X e€S(R)

Dependent Variable y

o
%

Hgrouf

Predictor Variable x

11



Random Intercept and Random Slope Model

Random Intercept

Random Intercept and Slope

Yij ~ N (ati,j +(b+ bi),UQ)
bi ~N(©0,7%), TeRT

A hierarchical model:

® Observation: v,
® | atent variable: b;,

® Parameters: § = (a,b,72,0?),

Dependent Variable y

Predictor Variable x

Credit: DOI: 10.7717/peerj.4794 /fig-1

(ai, b)) ~N(0,%),

Yij ~ N ((a + ai)ti; + (B +bi), 0’2)
Y e S2(R)

A hierarchical model:

Observation: y,
Latent variables: (a;,b;),

Parameters: 0 = (@, b, %, 02),

Dependent Variable y

Predictor Variable x

11



Random Intercept and Random Slope Model

Yig ~ N ((@+aiti; + (b+b:),0%) s (T D) g ®)
) - 2
(ai, bi) ~ N(0,%) Y2 X2

Remark: o
Var(yi;) = 51 + 2812t j + 5365 + 07

Cov(Ys 5, Yik) = 21 + Zia (tig + tig) + 23 tijtin;
Cov(yi,j,yer) =0.

® Within person, samples are correlated,
® Between persons samples are uncorrelated,

® Constant correlations within person for random intercept model,
Complex correlations possible with random slope (e.g. distant in time)

12



Mixed-Effect Models

2.2 Nonlinear Mixed-Effect Models



Nonlinear Mixed-Effect Models (NLME)

Dataset: Repeated observations of a phenomenon (t;,y;) € R*i x R¥,

Sheiner and Beal (1980), Bates and Watts (1988): V: € [1,n], Vj € [1, k],

{ Yij = f(zi;tz:j) + &4,

z = Ha+ HPB;

® g NN(070'2), o € RT, 2 € RPz,
® For each i € [1,n], HY € My, . (R) and H’ € M, ps (R),

® f nonlinear function,

® Equivalent writing: y; ; ~ N (f(Hf‘a + Hfﬁl,ti,j) ,02).

~» A multitude of (N)LME models: As many as there are situations to study.
13




Time alignment in dimension 1

Random Intercept and Random Slope Model:
Yij ~N ((Fz +a:)(tsj — to) + (b+b;) ,02) , where ¢ € R reference time,
6 = (a,b,%,0°)

Without obvious reference time: Estimate to as a parameter of the model

Yig ~ N (Eza,',(ti,j —to—7)+0b, 02) , Where to € R reference time,
0= (av E, to, 27 02)

e

t, time t time

Yiy = @+a(ty—to) + B+ +a, ¥ij = oty ~to—7) +b +e, Schiratti et al. (2015) 14



A Multitude of (N)LME Models

® Model for processing non-scalar data: matrices, anatomical shapes, etc.

® Bayesian framework — Prediction, new subject

333¥23335))

MClc Patients

3333333355

CN patients
The ADNI data set. Representative shape evolution

15



Mixed-Effect Models

2.3 Statistical Inference for Mixed Effects Models



The Expectation-Maximization Algorithm

The Expectation-Maximization algorithm

Let Y C R™, Z C R™ and © C R".

MLE: Given y? = (y17 s00 7yn) ey,

@Q“E € argmax q(y?;@)
6€O

E-step: Conditional expected log-likelihood
Q(010x) = /Zlogq(y,z;@)q(zw;ﬁk) du(z);

M-step: Maximize Q(-|0;) in ©:

Or+1 € argmax Q(0|6%) .
0€©

16



The Expectation-Maximization Algorithm

The Expectation-Maximization algorithm Convergence for curved exponential families
Let Y C R™, Z C R™ and © C R™. (M1) 35 :R™ x R** — S C R™* Borel function
MLE: Given y? = (y1,...,Yn) € Y™, Conv(S) C S, fz”S(yv z)| a(zly; ) du(z) < +oo

| aly,%0) = exp (—v(0) + { Sy, 2) | 6(6) ) |

@Q“E € argmax q(y?;&)
6€O

E-step: Conditional expected log-likelihood
Q(010x) = /Zlogq(y,z;@)q(Z\y;Hk) du(z);

M-step: Maximize Q(-|0;) in ©:

Or+1 € argmax Q(0|6%) .
€0 16




The Expectation-Maximization Algorithm

The Expectation-Maximization algorithm

Convergence for curved exponential families

Let Y C R™, Z C R™ and © C R".

MLE: Given y} = (y1,...,Yn) € V",

é\%LE € argmax q(y?;&)
6€O

E-step: Conditional expected log-likelihood
Q(010x) = /2103‘1(973§0)‘I(Z‘y§9k) du(z);

M-step: Maximize Q(-|0;) in ©:

Or+1 € argmax Q(0|6%) .
0€©

(M1) 35 :R"™ x R"> — S C R" Borel function
Conv(8) C S, [1IS(y, 2)ll a(zly; 0) du(z) < +oo

| aly,%0) = exp (—v(0) + { Sy, 2) | 6(6) ) |

(M2) ¥ € C2(8,R) and ¢ € C%(O, S);

(M3) 6 — [, S(y,2)q(zy; ) du(z) € C'(O,S);
(M4) ¢: 60 — fz q(y, z;0)du(z) € C1(6,R) and
0 [ atv.50)au(:) = [ naty.50)du);

(M5) 36 €C,S) st.
D(0(s)) + (slp(0(s))) > (0) + (sl6(0)) . 16




The Expectation-Maximization Algorithm

Convergence EM — Delyon, Lavielle,
Moulines (1999)

Assume (M1-5) and that (0 )ken remains
in a compact subset. Then, for any initial
point, lim d(f, L) =0,

k—oo

where £L={0€0|09p¢(0) =0}.

E-step: Conditional expected log-likelihood

Q010r) = /Zlogq(y,z;@)q(zw;ﬁk) dp(2) 5

M-step: Maximize Q(-|0;) in ©:

Or+1 € argmax Q(0|6%) .
0€©

Convergence for curved exponential families

(M1) 35 :R"™ x R"> — S C R" Borel function
Conv(8) C S, [1IS(y, 2)ll a(zly; 0) du(z) < +oo

| aly,%0) = exp (—v(0) + { Sy, 2) | 6(6) ) |

(M2) ¥ € C2(8,R) and ¢ € C%(O, S);

(M3) 6 — [, S(y,2)q(zy; ) du(z) € C'(O,S);
(M4) ¢: 60 — fz q(y, z;0)du(z) € C1(6,R) and
0 [ atv.50)au(:) = [ naty.50)du);

(M5) 36 €C,S) st.
D(0(s)) + (slp(0(s))) > (0) + (sl6(0)) . 16




The Expectation-Maximization Algorithm

Convergence EM — Delyon, Lavielle, Convergence for curved exponential families
Moulines (1999)

Assume (M1-5) and that (6)ken remains
in a compact subset. Then, for any initial

point, lim d(fs, L) =0, Lower
ke bound 0)
where L={0€ 0 |09pl(0) =0}.

E-step: Conditional expected log-likelihood
QU1 = | oga(y. 2:0) a(ely: 1) ()

M Maximi 0.) in © Intuition: Jensen inequality
-step: Maximize Q(-|0;) in ©: + Maximize a lower bound at each step

Or+1 € argmax Q(6|0;) .
0€O 16




Variants of the EM Algorithm

<
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Variants of the EM Algorithm

<

M-step

/

GEM - Generalized EM

E-step: Compute
Q(016x) = E[logq(Z]y, br)] ;

M-step: Find 0511 € O s.t.
Q(Or+110x) = Q(6k|6k),

(Delyon et al., 1999)
See also Gradient EM (Lange, 1995

17



Variants of the EM Algorithm

M-step

GEM - Generalized EM

SAEM

ETep \—ste

SEM — Stochastic EM

E-step

~

MCEM - Monte-Carlo EM

E-step: Compute
Q(016x) = E[logq(Z]y, br)] ;

M-step: Find 0511 € O s.t.
Q(Or+110x) = Q(6k|6k),

(Delyon et al., 1999)
See also Gradient EM (Lange, 1995

S-step: Draw an unobserved

sample zi from ¢( - |y; 0x) ;

M-step:

6‘“1 € argmax Qk+l(9) .
0cO

Maximize Qp+1:

(Celeux and Diebolt, 1985)

S-step:
24, ~ q(-|y; Ok) ;

Draw m samples

E-step: Monte—Carlo estim.

Qr(9) =
j=1

M-step: Maximize Q1.

(Wei and Tanner, 1990)

1 9
mZ g q(y, 213 0);

17



The Stochastic Approximation EM Algorithm

The SAEM algorithm

® /dea: Replace the E-step by a stochastic
approximation,

® Sequence of positive step-size (Vi )ken-
S-step: Draw z ~ q( - |y; 1) ;

SA-step: Update Qx(0) as
Qr1(0) = Qr(9)
+ 7k ( log q(y, z; 6) — Qr(0) ) ;
M-step: Maximize Q41 in ©:

€k+l € argmax Q]\+l((7) o
0cO

18




The Stochastic Approximation EM Algorithm

The SAEM algorithm Convergence for curved exponential families
oo oo
® |dea: Replace the E-step by a stochastic (SAEM1) +; € [0,1], nyk = 00 and Z'Y’% < o0:
approximation, k=1 k=1

(SAEM2) v € C"+(O,R) and ¢ € C"+(©,S);

® Sequence of positive step-size (Vi )ken-

St D 2 o Gl =[50 (SAEM3) E[¢(Zk+1)|]:k} = /Z¢(z)q(z|y;9k)du(z);

SA-step: Update Qx(0) as (SAEM4) /ZHS(%Z)HQCI(%Z% 0)du(z) < +oo.
Qr+1(0) = Qr(0)
+ 7 ( log q(y, 2k: ) — Qr(9) ) ;
M-step: Maximize Q41 in ©:

€k+l € argmax Q]\+l((7) o
0cO

18




The Stochastic Approximation EM Algorithm

Cvgce SAEM — Delyon et al. (1999)
Assume (M1-5), (SAEM1-4) and that
(Sk)keN remains in a compact subset.
Then, for any initial point,

lim d(0;, L) =0,
k—o0
where L= {6 € ©|0¢(0) =0}.
S-step: Draw zj ~ q(-|y;0k);
SA-step: Update s;(0) as
si41(0) = sk(0) + 7 (S(y, z) — sk(9)) ;
M-step: Maximize Q41 in ©:

Or1 € argmax Qpy1(0).
0O

Convergence for curved exponential families

oo oo
(SAEM1) ~; € [0,1], Z'yk = oo and Z’Y’% < 00;
k=1 k=1

(SAEM2) o € C"+(O,R) and ¢ € C"+(©,S);

(SAEM3) E[¢(Zk11)|Fi) :/Z¢(z)q(z|y;0k)du(2);

(SAEMA) [ 15(0.2) P a(y,:6) du(z) < +oo.

MCMC-SAEM: Monte-Carlo Markov chain
procedure in the S-step
(Kuhn and Lavielle, 2004)
(Allassonniére et al., 2010) 18




Keep Home Message

® |ow sample size, many features;

® Highly structured data, grouping factors such as species, gender, etc.;
® Two different types of effects: Fixed vs random effects;

® Bayesian frameworks allows prediction;

® Estimation performed through the EM algorithm (or its variants).

16
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