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Introduction

1.1 Principles and Risks of Forecasting
1.2 Decomposition of a Time Series



Statistical Forecasting

Time series: Sequence of observations of a phenomenon over time
Time series: Continuous or discrete regular time
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Principles and Risks of Forecasting

Example: Cryptocurrencies, electricity consumption, oil prices, French population,
heart rate, seismograph readings, Internet traffic, cell phone sales, flood heights of
the Nile, ocean temperature, carbon dioxide concentration in the atmosphere, blood
glucose levels, the President’s popularity rating, etc.

Idea: Signal vs. noise

“Prediction is very difficult, especially if it’s about the future.”
Nils Bohr, Nobel laureate in Physics

Risks of forecasting:

• Intrinsic risk: random variation, beyond explanation;
• Parameter risk: errors in estimating the parameters;
• Model risk: choosing the wrong model.
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Risks of Forecasting

Example: US housing after 2005
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Descriptive Analysis

Monthly number of airline passengers (in thousands)

A non-stationary series:
• Trend,
• Seasonality,
• Variance

We observe (yt)t∈T a trajectory of a stochastic process

Yt = mt + st + Zt , where t ∈ T ⊂ Z or N

and (Zt)t∈T is a random noise that one hopes is stationary
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Trend and Seasonality

2.1 Trend Estimation
2.2 Seasonality Estimation
2.3 Differencing
2.4 Stationarity



Trend mt

Yt = mt + st + Zt , where t ∈ T ⊂ Z or N

• Expectation: Slow changes that capture long-term variations;

• Some examples: Polynomial trend: mt = a0 + a1t+ . . .+ adt
d,

Exponential trend: mt = a0 + a1α
t,

Logistic trend: mt = 1
a0+a1t

• Detrending: Remove the trend component from the time series
→ Trend estimation, average, moving average, exponential smoothing

ŷt = 1
2`+ 1

t+∑̀
i=t−`

yi
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Trend Estimation: Parametric Estimation

In case of parametric representation of the trend → Regression

Polynomial trend → Linear regression, i.e. least square estimation

(â0, . . . , âd) = argmin
(a0,...,ad)∈Rd

n∑
t=1

(yt −mt)2 , where mt = a0 + a1t+ . . .+ adt
d .

Exercise: â = (tAA)−1(tAY )

Y =

y1

...
yn

 a =

a0

...
ad

 A =

1 t1 t21 . . . td1
...

...
...

. . .
...

1 tn t2n . . . tdn
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Trend Estimation: Non-Parametric Estimation

mt = f(t) , where f regular

Several approaches are possible  kernel and local polynomials estimators.

Kernel: Function K : Rd → R such that
∫
K2 <∞ and

∫
K = 1.

Kernel estimator associated with window h ∈ R+ and kernel K

f̂h(x) =
∑n

t=1 ytK(x−t
h

)∑n

t=1 K(x−t
h

)

Examples: Gaussian, uniform, triangle, logis-
tic, Epanechnikov, etc.
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Trend Estimation: Non-Parametric Estimation

mt = f(t) , where f regular

Several approaches are possible  kernel and local polynomials estimators.

local polynomial estimator of degree q associated with window h and kernel K

f̂h(x) = argmin
P

n∑
t=1

Wt(x)‖yt − P (xt − x)‖2

where Wt(x) =
K(x−t

h
)∑n

t=1 K(x−t
h

)
and P (x) =

q∑
j=0

ajx
j .

Another techniques: projection on adapted function bases, etc.
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Trend Estimation by Exponential Smoothing

Exponential smoothing of parameter α ∈ [0, 1]

m̂t = αyt + (1− α)m̂t−1 and m̂1 = y1

Exercise:

1. Show that exponential smoothing is a moving average, specify its nature and
its coefficients.

2. What can be said about the evolution of weights according to the past
considered? What happens when α is close to 1, close to 0?

Exponential smoothing of Holt-Winters of parameter α ∈ [0, 1] and β ∈ [0, 1]

ŷt+h = `t + hbt

Level : `t = αyt + (1− α)`t−1 + bt−1

Trend : bt = β(`t − `t−1) + (1− β)bt−1
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Seasonality st

Yt = mt + st + Zt , where t ∈ T ⊂ Z or N

• Expectation: Periodic deterministic function of period r such that

∀t ∈ T,
r∑
i=1

st+i = 0 ;

• Some examples: combination of sinusoidal functions, Indicator functions;

• Least square estimation: st = a0 +
k∑
j=1

aj cos(λjt) + bj sin(λjt) , where the

aj and bj are unknown and λi and λj are known integer multiples of 2π
d
.
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Delay and Difference Operators

Delay operator (BY )t = Yt−1;

Difference operator: (∆Y )t = Yt − Yt−1 = (1−B)Yt

Seasonal difference operator: (∆dY )t = Yt − Yt−d = ((1−Bd)Y )t

Difference operator of order n: ∆n = (1−B)n

Proposition:

• n-order-difference operator eliminates polynomial trend of degree < n;
• Seasonal difference operator eliminates a seasonal component of period d.
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Stationarize the Series

Test of Stationarity: Dickey Fuller, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 15



Random time series modeling

3.1 Stochastic Process
3.2 Stationary Process
3.3 Auto Regressive Moving Average (ARMA) Models



Stochastic Process

Stochastic Process: Family (Xt)t∈Z of random variables with values in R

Ω× Z→ R

(ω, t) 7→ Xt(ω)

• ∀t ∈ Z, Xt(ω) is a random variable;
• ∀ω ∈ Ω, t 7→ Xt(ω) is a trajectory of the process.

Example: Gaussian white noise is a sequence of independent and identically
distributed variables (i.i.d.) according to a Gaullian law N (0, σ2).

Second Order process: (Xt)t∈Z is said of second order if ∀t Xt ∈ L2(Ω,A,P).

For second order process:

• Mean µX : Z→ R, µX(t) = E[Xt]
• Autocovariance γX : Z× Z→ R, γX(s, t) = Cov(Xs, Xt)
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Random time series modeling

3.1 Stochastic Process
3.2 Stationary Process
3.3 Auto Regressive Moving Average (ARMA) Models



Stationary Process

Strongly stationary process: For all h ∈ Z and all sequence (t1, . . . , tn) ∈ Zn,
(Xt1 , . . . , Xtn ) and (Xt1+h, . . . , Xtn+h) have the same law.

Stationary process: A second order process is stationary if µX is constant and γX
is invariant by translation.

∀s, t, h ∈ Z, µX(t+ h) = µX(t) and γX(s, t) = γX(s+ h, t+ h)

Exercise: What implication(s) exist between strong stationarity and stationarity?
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Autocovariance and autocorrelation functions.

Let (Xt)t∈Z a stationary process.

Autocovariance function:

γX : Z → R

h 7→ γX(h) = γX(0, h) = Cov(Xt, Xt + h) (∀t ∈ Z)

Autocorrelation function:

ρX : Z → [−1, 1]

h 7→ ρX(h) = γX(h)
γX(0) = Cov(Xt, Xt + h)√

V ar(Xt)
√
V ar(Xt+h)

(∀t ∈ Z)
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Auto Regressive Moving Average (ARMA) Models

ARMA: (Xt)t∈Z admits an ARMA(p, q) representation if

∀t ∈ Z, Φ(B)Xt = Θ(B)Zt

where (Zt)t∈Z is a (Gaussian) white noise and

Φ(B) = I−φ1B−φ2B
2 . . .−φpBp and Θ(B) = I+θ1B+θ2B

2+. . .+θqBq

Theorem: If Φ has no module 1 root then ARMA(p, q) has a single stationary
solution

 Rational fraction of an ARMA, depending on whether it is causal and reversible
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Moving Average (MA) Models

MA: (Zt)t∈Z admits an MA(q) representation if it is of the second order, stationary,
and solution of the recurrence equation

∀t ∈ Z, Zt = εt +
q∑
k=1

θkεt−k = Θ(B)εt

where (εt)t∈Z is a (Gaussian) white noise and

Θ(B) = I + θ1B + θ2B
2 + . . .+ θqB

q .

• q is the order of the process and (θ, σ2) its parameters
• Fully specified,
• Several representations but only one canonical representation.

Exercise:

1. Show that V ar(Zt) = σ2(1 +
∑q

j=1 θ
2
j )

2. What about γZ(h) for h > q?
3. Compute γZ(1), γZ(2) and derive a general expression from γZ(h) for h 6 q
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Auto Regressive (AR) Models

AR: (Zt)t∈Z admits an AR(p) representation if it is of the second order, stationary,
and solution of the recurrence equation

∀t ∈ Z, Zt = εt +
p∑
k=1

φkZt−k i.e. ∀t ∈ Z, εt = Φ(B)Zt

where (εt)t∈Z is a (Gaussian) white noise and

Φ(B) = I − φ1B − φ2B
2 . . .− φpBp .

Theorem:

• An infinite number of second order processes verifying the equation;
• If Φ has no module 1 root then AR(p) has a single stationary solution
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Auto Regressive (AR) Models

AR: (Zt)t∈Z admits an AR(p) representation if it is of the second order, stationary,
and solution of the recurrence equation

∀t ∈ Z, Zt = εt +
p∑
k=1

φkZt−k i.e. ∀t ∈ Z, εt = Φ(B)Zt

Exercise: Consider (Zt)t∈Z of canonical representation Φ(B)Zt = εt

1. Show that V ar(Zt) =
p∑
i=1

φiγZ(i) + V ar(εt) and γZ(0) = σ2

1−
∑p

i=1 φiρZ(i)
;

2. Show that, for all h ∈ N∗, Cov(Zt, Zt+h) =
p∑
i=1

φiγZ(h− i) + V ar(εt) and

ρZ(h) = σ2

1−
∑p

i=1 φiγZ(h− i)
;

3. Check the exponential decay of autocorrelations on an AR(1) of canonical
representation Zt = φZt−1 + εt
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Take home message

In practice, here are the steps we can try to follow:

• Plot the time series and graphically look for a trend or a seasonal component;
• Model the trend and seasonal component. Differentiation can be used;
• Model the remainders.
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