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Introduction

1.1 Principles and Risks of Forecasting



Statistical Forecasting
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Time series: Sequence of observations of a phenomenon over time
Continuous or discrete regular time



Principles and Risks of Forecasting

Example: Cryptocurrencies, electricity consumption, oil prices, French population,
heart rate, seismograph readings, Internet traffic, cell phone sales, flood heights of
the Nile, ocean temperature, carbon dioxide concentration in the atmosphere, blood

glucose levels, the President’s popularity rating, etc.

Idea: Signal vs. noise
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“Prediction is very difficult, especially if it's about the future.”
Nils Bohr, Nobel laureate in Physics

Risks of forecasting:

® |ntrinsic risk: random variation, beyond explanation;
® Parameter risk: errors in estimating the parameters;

® Model risk: choosing the wrong model.
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Risks of Forecasting
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Introduction

1.2 Decomposition of a Time Series



Descriptive Analysis

AirPassengers

100 200 300 400 500 600

T T T T T T
1950 1952 1954 1956 1958 1960

Time

Monthly number of airline passengers (in thousands)

A non-stationary series:
® Trend,
® Seasonality,

® Variance
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Descriptive Analysis
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We observe (y:)icT a trajectory of a stochastic process

Ye =mi+st+ 72y , whereteT CZorN

and (Z:)ier is a random noise that one hopes is stationary




Descriptive Analysis
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Trend and Seasonality

2.1 Trend Estimation



Trend m;
Ye =mi+s:+ 2 , whereteT CZorN

® Expectation: Slow changes that capture long-term variations;

® Some examples: Polynomial trend: m; = ao + a1t + ... + aqt?,
Exponential trend: m; = ao + a1af,
. . . _ 1
Logistic trend: m; = Zotart
® Detrending: Remove the trend component from the time series
— Trend estimation, average, moving average, exponential smoothing

1 t+£4
B= gy 2 v

i=t—¢




Trend Estimation: Parametric Estimation
In case of parametric representation of the trend — Regression

Polynomial trend — Linear regression, i.e. least square estimation

n

~ —~ . 2

(ag,...,aq) = argmin (y+ —me)” , where my = ao + art +
(@ ag)ERY =1

Exercise: | a= ("AA)"!(*AY) |
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Trend Estimation: Non-Parametric Estimation

me = f(t), where f regular

Several approaches are possible ~~ kernel and local polynomials estimators.




Trend Estimation: Non-Parametric Estimation

me = f(t), where f regular

Several approaches are possible ~~ kernel and local polynomials estimators.

Kernel: Function K: R — R such that JK?<ooand [K=1.

Kernel estimator associated with window h € RT and kernel K

ﬁ(m) Z: 1 ytK(T)
>t K(555)
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10+ — Triangle
—Epanechmkw
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Trend Estimation: Non-Parametric Estimation

me = f(t), where f regular

Several approaches are possible ~~ kernel and local polynomials estimators.

local polynomial estimator of degree g associated with window h and kernel K

~

fu(@) = arg}gninz We(@)lly: — Plar — )|

K(zt 4 )
where Wy (2) = —=7——2—— and P(z) = ajz’ .
Zt:l K(Tt) Z ’

Jj=0

Another techniques: projection on adapted function bases, etc.
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Trend Estimation by Exponential Smoothing

Exponential smoothing of parameter « € [0, 1]

me =ay: + (1 — a)rie—1 and 71 =y

Exercise:
1. Show that exponential smoothing is a moving average, specify its nature and
its coefficients.

2. What can be said about the evolution of weights according to the past
considered? What happens when « is close to 1, close to 07
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Trend Estimation by Exponential Smoothing

Exponential smoothing of parameter « € [0, 1]

me =ay: + (1 — a)rie—1 and 71 =y

Exercise:

1. Show that exponential smoothing is a moving average, specify its nature and
its coefficients.

2. What can be said about the evolution of weights according to the past
considered? What happens when « is close to 1, close to 07

Exponential smoothing of Holt-Winters of parameter o € [0,1] and 8 € [0, 1]
Dtan = e + hby

Level: £y = ay: + (1 — a)ly—1 + br—1
Trend: by = B(ly — Ly—1) + (1 — B)bi—1
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Trend and Seasonality

2.2 Seasonality Estimation



Seasonality s;

Ye =mi+st+2Zy , whereteT CZorN

® Expectation: Periodic deterministic function of period r such that
vteT, Zst+i=0;
=1

® Some examples: combination of sinusoidal functions, Indicator functions;

k
® Least square estimation: s; = ag + Z aj cos(\jt) + b; sin(Ajt) , where the
j=1
a;j and b; are unknown and \; and \; are known integer multiples of 27”.
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Trend and Seasonality

2.3 Differencing



Delay and Difference Operators

Delay operator (BY): = Y;_1;

Difference operator: (AY); =Y; —Y:—1 = (1 — B)Y;

Seasonal difference operator: (A;Y); =Y; —Y;_q = (1 — BY)Y),

Difference operator of order n: A™ = (1 — B)"

Proposition:

® n-order-difference operator eliminates polynomial trend of degree < n;

® Seasonal difference operator eliminates a seasonal component of period d.

13
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Trend and Seasonality

2.4 Stationarity



Stationarize the Series
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Random time series modeling

3.1 Stochastic Process



Stochastic Process

Stochastic Process: Family (X¢)¢cz of random variables with values in R

OxZ—R
(w, 1) = Xi(w)

® Vt € Z, X¢(w) is a random variable;
® Vw e Q, t = X (w) is a trajectory of the process.

Example: Gaussian white noise is a sequence of independent and identically
distributed variables (i.i.d.) according to a Gaullian law N (0, 0?).

Second Order process: (X:)icz is said of second order if Vt X; € L*(Q, A, P).
For second order process:

® Mean px : Z — R, ux(t) = E[X¢]
® Autocovariance vx : Z X Z — R, yx(s,t) = Cov(Xs, Xy)

16




Random time series modeling

3.2 Stationary Process



Stationary Process

Strongly stationary process: For all h € Z and all sequence (t1,...,t,) € Z",
(Xtyy.o oy Xt,) and (X4, 4, - -y Xt,,+n) have the same law.

Stationary process: A second order process is stationary if px is constant and vx
is invariant by translation.

Vs,t,h € Z, px(t+h)=px(t) and  yx(s,t) =vx(s+h,t+h)

Exercise: What implication(s) exist between strong stationarity and stationarity?

17




Autocovariance and autocorrelation functions.

Let (X¢)tez a stationary process.

Autocovariance function:

¥x: Z =R
h— vx(h) =vx(0,h) = Cov(X¢, Xt + h) (VteZ)

Autocorrelation function:

pPX Z — [71, 1]
vx (h) Cov(X, Xt + h)

h— px(h) = 7% (©) VVar(Xe)y/Var(Xein)

(Vt € Z)

18



Random time series modeling

3.3 Auto Regressive Moving Average (ARMA) Models



Auto Regressive Moving Average (ARMA) Models

ARMA: (X;)tez admits an ARMA(p, q) representation if

| VteZ, ®(B)X,=0(B)Z |

where (Z¢)iez is a (Gaussian) white noise and

®(B)=I1-¢p1B—¢2B*>...—¢,B” and  O(B)=I+6,B+60:B°+...4+0,B*

Theorem: If ® has no module 1 root then ARMA(p, q) has a single stationary
solution

~» Rational fraction of an ARMA, depending on whether it is causal and reversible

19




Moving Average (MA) Models

MA: (Z:)tcz admits an MA(q) representation if it is of the second order, stationary,
and solution of the recurrence equation

q
VtE€Z, Zi=eit+ Y Oheii = O(B)e:

=\

where (g¢)tez is a (Gaussian) white noise and

O(B)=I+6:B+6:B°+...+60,B%.

® g is the order of the process and (#, c?) its parameters
® Fully specified,
® Several representations but only one canonical representation.
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Moving Average (MA) Models

MA: (Z:)tcz admits an MA(q) representation if it is of the second order, stationary,
and solution of the recurrence equation

q
VtE€Z, Zi=eit+ Y Oheii = O(B)e:

=\

where (g¢)tez is a (Gaussian) white noise and

O(B)=I+6:B+6:B°+...+60,B%.

® g is the order of the process and (#, c?) its parameters
® Fully specified,
® Several representations but only one canonical representation.

Exercise:

1. Show that Var(Z:) = o(1 + Z;zl 0?)
2. What about yz(h) for h > g7
3. Compute vz(1), 7z(2) and derive a general expression from vz (h) for h < g
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Auto Regressive (AR) Models

AR: (Z)icz admits an AR(p) representation if it is of the second order, stationary,
and solution of the recurrence equation

p
ViEL, Zi=ei+» onZik| e VtEZ, e =®(B)Z |
k=1

where (g¢)¢ez is a (Gaussian) white noise and
®B)=1I1—¢1B—¢2B*>... — $,B".
Theorem:

® An infinite number of second order processes verifying the equation;

® |f & has no module 1 root then AR(p) has a single stationary solution

21



Auto Regressive (AR) Models

AR: (Zi)tez admits an AR(p) representation if it is of the second order, stationary,
and solution of the recurrence equation

p
Vit (S Z, Zt =&t + Z ¢th7k ie. | Vit c Z, et = @(B)Zt |

k=1

Exercise: Consider (Z;).cz of canonical representation ®(B)Z; = &,

2

P
ag
1. Show that Var(Z;) = g 1)+ Var(e:) and )= ————;
(2.) z::aﬁ 1(0) + Var(e) and 12(0) = Tosw
p
2. Show that, for all h € N*, Cou(Zi, Zusn) = »_ ¢ivz(h— i) + Var(e;) and
=1

2
g

N 1- Zf:l (ZSfYZ(h - ’L)’

pz(h)

3. Check the exponential decay of autocorrelations on an AR(1) of canonical
representation Z; = ¢Z;_1 + &

21



Take home message

In practice, here are the steps we can try to follow:

® Plot the time series and graphically look for a trend or a seasonal component;

® Model the trend and seasonal component. Differentiation can be used;

® Model the remainders.

22
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