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A large part of applied mathematics consists, in a certain way, in mod-
eling, that is to say, in designing one (or several) model(s) of a math-
ematical nature, allowing to explain, in a sufficiently general way, a
given phenomenon, whether it is physical, biological, economic or other.
Schematically, we can distinguish between deterministic modeling and
stochastic modeling. In a deterministic model, we do not consider ran-
dom variations; on the contrary, stochastic modeling considers these
random variations by associating them with a probability law.

The classical tools of deterministic modeling are the ordinary differential
equations (ODE) and the partial differential equations (PDE), which
consider the variations of a phenomenon according to factors such
as time, temperature... These equations rarely have explicit solutions,
and their resolution often requires the implementation of numerical
algorithms to obtain a solution, possibly approximate.

The main objective of stochastic modeling is to specify probability
laws that take into account the random variations of certain phenomena,
variationsdue tounknownorunmeasurable causes (for example, because
they are to come). Within stochastic modeling, probabilistic modeling
aims to provide a formal framework for describing the randomvariations
mentioned above and studying the general properties of the phenomena
that govern them. In amore applied sense, statisticalmodeling essentially
consists in defining appropriate tools to model the observed data, taking
into account their random nature.

Note that the term statistical modeling is very general. Hence, ultimately,
any statistical approach falls under it. However, what we will deal
with in this course is relatively precise and constitutes a specific part
of statistical modeling. As a consequence, there are many statistical
modeling methods. Here, we will study only a small part of them. At
the same time, the considerable increase in the amount of data (internet,
high-speed biology, marketing, etc.), the need to exploit these data
statistically, and modern computing tools have given birth to numerous
methods in the last few years.1 However, these methods are not only
more sophisticated, they are also more and more “greedy” in terms of
computation time.

There is almost always a privileged variable in the methods we will
study, generally called the variable to be explained or the response
variable, and denoted . (of course, a random variable). The objective is
then to build a model that explains “as well as possible” this variable .
as a function of explanatory variables observed on the same sample.
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Listing 1.1: Exploratory statistics of quan-
titative variables.

> summary(snore[c("age",

"weight","height")])

age

Min. :23.00

1st Qu.:43.00

Median :52.00

Mean :52.27

3rd Qu.:62.25

Max. :74.00

weight

Min. : 42.00

1st Qu.: 77.00

Median : 95.00

Mean : 90.41

3rd Qu.:107.00

Max. :120.00

height

Min. :158.0

1st Qu.:166.0

Median :186.0

Mean :181.1

3rd Qu.:194.0

Max. :208.0

Figure 1.1: Graphical representations of
the distribution of quantitative variables:
age, weight and height.

1.1 Illustrative Dataset

To illustrate the statistical approach and the problems that linear and
generalized linear models can address, we present here a statistical
analysis on a simple example.

In a population-based study, a hospital was interested in the snoring
propensity of 100 patients. The variables considered are:

I age: in years,
I weight : in kg,
I height: in cm,
I alcohol: number of glasses drunk per day (in red wine equivalent),
I sex: sex of the person (F=female, M=male),
I snoring: diagnosis of snoring (Y=snoring, N=not snoring),
I smoking: smoking behavior (Y=smoker, N=non-smoker).

An extract of the data is presented below:

age weight height alcohol sex snoring smoking

1 47 71 158 0 M N Y

2 56 58 164 7 M Y N

3 46 116 208 3 M N Y

4 70 96 186 3 M N Y

5 51 91 195 2 M Y Y

6 46 98 188 0 F N N

The dataset associated with this chapter is available on the moodle page
of the course: snore.txt.

1.1.1 Variables of Different Nature

Variables are analyzeddifferentlydependingon their nature: quantitative
or qualitative.

A quantitative variable is a variable that can be represented by numbers
on which the basic arithmetic operations have a meaning. They are usu-
ally summarized in the form of an indicator: mean, standard deviation,
etc. as in Listing 1.1. Graphically, we generally opt for a histogram or a
box plot for continuous quantitative variables, and for a bar chart for
discrete quantitative variables (cf. Figure 1.1).

On the other hand, qualitative variables characterize an individual’s
membership in a group (or category). A qualitative variable is therefore
coded with mutually exclusive classes (each individual can only belong
to one category). Categorical variables are therefore described in terms of
counts (absolute frequency of each modality) and percentages (relative
frequencies), as in Table 1.1. They are graphically displayed in bar charts
(cf. Figure 1.2).

https://moodle.insa-toulouse.fr/pluginfile.php/111951/mod_folder/content/0/snore.txt
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Figure 1.2: Bar graphs representing the
distribution of categorical variables: gen-
der, smoking and snoring.

Table 1.1: Frequency table by gender,
smoking and snoring.

Modality Freq.(%)

Gender Female 25
Male 75

Smoking Yes 64
No 36

Snoring Yes 35
No 65

Figure 1.3:Weight distribution of individ-
uals according to their gender.

Listing 1.2: Normality test for weights.

> weightF = snore$weight[

snore$sex=="F"]

> weightM = snore$weight[

snore$sex=="M"]

> shapiro.test(weightF)

> shapiro.test(weightM)

Shapiro-Wilk normality test

data: weightF

W = 0.9146, p-value = 0.03865

Shapiro-Wilk normality test

data: weightM

W = 0.95406, p-value =

0.008379

1.2 Modeling Quantitative Variables

In this part, we try to evaluate the possible effect of the individuals’
characteristics on their weight (quantitative variable). Depending on the
nature of the variables, the methods of analysis are different.

1.2.1 Comparative Study of Two Populations

Before proposing a statistical model, we would like to know if gender
impacts people’s weight.

Visually, in Figure 1.3, we represent the empirical distribution of weights,
on the one hand, for women and, on the other hand, for men. Assuming
that gender does not affect weight, we should observe similar, or at
least comparable, distributions. This does not seem to be the case here.
Nevertheless, the question remains whether this difference is statistically
significant or not.

In 3rd year, you studied a test to test the equality of two Gaussian
variables: the Student C-test. To determine whether we can use such a
test, we shall first test the normality of our samples. To this end, we can
perform several statistical test procedures: Q-Q plot, Kolmogorov test,
or Shapiro-Wilk test for instance.

Listing 1.2 shows the result of a Shapiro-Wilk procedure. The ?-values
associated with each test are less than 0.05. So, we reject the normality
hypothesis with a 5% risk regardless of the gender of the individuals.
Thus, we cannot compare these two populations using a Student C-test.
We have to use more generic tests: namely, non-parametric tests, such as
the Wilcoxon-Mann-Whitney or the Kolmogorov-Smirnov one.

We will detail all these tests in Chapter 3.

1.2.2 Linear Regression

To study the relationshipbetween twoquantitativevariables (for example,
betweenweight and height, or weight and age), one can plot a scatterplot
(Figure 1.4) and calculate the linear correlation coefficient between these
two variables.

> cor.test(snore$height, snore$weight, method = "pearson", conf.

level = 0.95)

Pearson s product-moment correlation

data: snore$height and snore$weight

t = 24.463, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8931821 0.9503567

sample estimates:

cor

0.9269744
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Figure 1.4: Scatterplot representing the
relationship between weight and height
(top), weight and age (bottom).

Table 1.2:Pearson’s linear correlation coef-
ficient and test of nullity of this coefficient.

height age

weight 0.92 -0.004
?-value < 2.2 10−16 0.9687

In other words, the correlation coefficient here is 0.92 with a ?-value less
than 2.2 10−16. For the pair (weight, age), we find that the correlation
coefficient is −0.004 with a ?-value equal to 0.9687. See Table 1.2. Hence,
we find that the linear correlation coefficient is significantly different
from 0 in the case of the regression of weight against height. This is not
the case for the regression of weight against age.

1.2.2.1 Simple Linear Regression

The scatterplot can be summarized by a line that we will call the simple
linear regression line. This is the simplest case of a linear model, which
allows us to explain a quantitative variable in terms of another quantita-
tive variable. For example, the linear regression line summarizing the
relationship between weight and height has the equation:

∀8 ∈ J1, 100K , F486ℎC8 = 0 + 1 × ℎ486ℎC8 + �8 , (1.1)

where �8 is the error associated with each observation. Generally, these
errors are assumed to be independent Gaussian variables with constant
variance �2 to be estimated.

The statistical model underlying Equation (1.1) can also be presented in
a matrix form.

Exercise 1.1 Let the following vectors: � = C(0, 1)

F486ℎC = C(F486ℎC1 , . . . , F486ℎC100) and � = C(�1 , . . . , �100) .

Show that the model can be written as

F486ℎC = -� + � , (1.2)

where - is a matrix to be specified.

In the model (1.2), � = C(0, 1) and �2 are unknown. In order to estimate
the parameters 0 and 1, we use the least squares method. We thus choose
the pair (0̂ , 1̂) verifying :

(0̂ , 1̂) = argmin
,�

100∑
8=1
(F486ℎC8 −  − � ℎ486ℎC8)2

= argmin
,�

‖F486ℎC −  1100 − � ℎ486ℎC‖2 .

In the chapter dedicated to linear regression (Part II), we will determine
the explicit expression of these estimators and study their properties.
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Using the lm function in R, we can easily fit this linear regression model
on the data:

> reg <- lm(weight~height,data=snore)

> summary(reg)

Call:

lm(formula = weight ~ height, data = snore)

Residuals:

Min 1Q Median 3Q Max

-22.2927 -1.9744 0.6785 5.7136 15.4269

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -144.90532 9.64523 -15.02 <2e-16 ***
height 1.29937 0.05312 24.46 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7.064 on 98 degrees of freedom

Multiple R-squared: 0.8593, Adjusted R-squared: 0.8578

F-statistic: 598.4 on 1 and 98 DF, p-value: < 2.2e-16

In practice we obtain the following estimates:

I (1̂)obs = 1.299: Estimate of the slope of the regression line, i. e.
estimate of the average variation of weight with respect to height,

I (0̂)obs = −144.905: Estimate of the intercept of the regression line,
I (�2)obs = 7.0642

The slope estimate equal to 1.299 is significantly different from0, showing
thatweight andheight are significantly related. These preliminary results
only approximate the underlying linear-undermodel. Inmany situations,
an in-depth study remains to be carried out to first “validate” the model
and then exploit it: construction of tests, confidence intervals, etc. We
will discuss these notions in more detail in the following chapters.

1.2.2.2 Multiple Linear Regression

It can also be interesting to model a variable as a function of several
other quantitative variables, using a multiple linear regression model. For
example, we can model weight as a function of height and age, which
gives the following equation:

∀8 ∈ J1, 100K , F486ℎC8 = 0 + 1 × ℎ486ℎC8 + 2 × 0648 + �8 ,

where (�8)8∈J1,100K denote independent Gaussian variables with constant
variance �2.

Exercise 1.2 Considering the vectors � = C(0, 1, 2)

F486ℎC = C(F486ℎC1 , . . . , F486ℎC100) and � = C(�1 , . . . , �100) .
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Figure 1.5: Parallel boxplots representing
the relationship between weight and sex
(top); between weight and smoking (bot-
tom).

Show that the model can be written as

F486ℎC = -� + � , (1.3)

where - is a matrix to be specified.

Inparticular, one cannotice by looking atEquation (1.2) andEquation (1.3)
that the two linear regression models seen previously are written in a
“same” matrix form.

1.2.3 Analysis of Variance (ANOVA)

It is possible to study the relationship between a quantitative variable and
a qualitative variable, for example between weight and sex or between
weight and smoking. This relationship is represented graphically by
parallel boxplots (cf. Figure 1.5).

1.2.3.1 One-Way Analysis of Variance

Intuitively, to compare the weight of men and women, we will calculate
the average weight for each group. Statistically, we model the weight as
a function of gender by implementing a one-way analysis of variance
model that is written as :

∀8 ∈ J1, 100K , F486ℎC8 = 0 · 1B4G=� + 1 · 1B4G=" + �8 ,

where (�8)8∈J1,100K denote independent Gaussian variables with constant
variance �2. In this case, by reordering the observations according to the
factor gender, the model can be written in the following matrix form:

©«

F486ℎC�,1
...

F486ℎC�,=�
F486ℎC",1

...

F486ℎC",="

ª®®®®®®®®®¬︸            ︷︷            ︸
F486ℎC

=

©«

1 0
...

...

1 0
0 1
...

...

0 1

ª®®®®®®®®®¬︸  ︷︷  ︸
-

(
0

1

)
︸︷︷︸

�

+

©«

��,1
...

��,=�
�",1
...

�",="

ª®®®®®®®®®¬︸    ︷︷    ︸
�

,

where F486ℎC�,8 denotes the weight of the 8-th woman, 8 ∈ J1, =�K. The
same for F486ℎC",8 , 8 ∈ J1, ="K, for men. In practice, the least squares
method is used to estimate the unknown parameters. Still using the lm
function of R, we obtain the following results:
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Figure 1.6: Scatterplots representing the
relationship between weight and height
according to gender.

> anova <- lm(weight~sex-1,data=snore)

> summary(anova)

Call:

lm(formula = weight ~ sex - 1, data = snore)

Residuals:

Min 1Q Median 3Q Max

-48.773 -12.773 4.227 16.227 29.227

Coefficients:

Estimate Std. Error t value Pr(>|t|)

sexF 89.320 3.764 23.73 <2e-16 ***
sexM 90.773 2.173 41.77 <2e-16 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 18.82 on 98 degrees of freedom

Multiple R-squared: 0.9593, Adjusted R-squared: 0.9584

F-statistic: 1154 on 2 and 98 DF, p-value: < 2.2e-16

The average weight of women and men is therefore (0̂)obs = 89 and
(1̂)obs = 91 respectively.

1.2.3.2 Two-Way Analysis of Variance

Studying the combined effect of gender and smoking on weight is also
possible. Intuitively, we can study class averages by crossing the two
categorical variables. We implement a two-way analysis of variance
model to explore this combined effect on weight. This model is written
as follows: For all 8 ∈ {�, "}, 9 ∈ {., #} and : ∈ J1, =8 9K,

F486ℎC8 9: = 08 + 1 9 + 28 9 + �8 9: ,

where F486ℎC8 9: denotes the weight of the : ∈ J1, =8 9K individual of
sex 8 ∈ {�, "} and smoking status 9 ∈ {., #}. The (�8 9:) denote
independent Gaussian variables with constant variance �2. We can also
write this model in matrix form:

F486ℎC = -� + � .

This model will allow us to study the effect of each factor (gender
and smoking) on weight and detect combinations between gender and
smoking that would give a remarkably different weight from other
classes.

1.2.4 Analysis of Covariance (ANCOVA)

In our example, we can attempt to explain weight by height (quantitative
variable) and gender (qualitative variable). In this case, we can draw
two scatterplots between weight and height, one for women and one for
men, as shown in Figure 1.6
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Table 1.3: Tobacco use by gender. Amout of
smoking male (resp. female).

F M Tot.

Smoker 10 54 64
Non-smoker 15 21 36

Total 25 75 100

Listing 1.3: Chi-squared test.

> chisq.test(df_smoke)

Pearson’s Chi-squared test

with Yates’ continuity

correction

data: df_smoke

X-squared = 7.0023, df = 1,

p-value = 0.00814

The analysis of covariance model writes as follows:

∀8 ∈ {�, "} , ∀9 ∈ J1, =8K , F486ℎC8 , 9 = 08 + 18 ℎ486ℎC8 , 9 + �8 , 9 ,

where F486ℎC8 , 9 denotes the weight of individual 9 of sex 8, and where
the errors �8 , 9 are assumed to be independent centered Gaussian of
variance �2.

We can therefore compare the effect of height on weight according to
gender by implementing an analysis of covariance model. In practice, this
corresponds to estimate a regression line of weight versus height for
each modality of the sex variable.

In conclusion, in the different problems mentioned above, namely linear
regression, analysis of variance, and analysis of covariance, we have
used :

I the same type of matrix modeling,
I the same type of assumptions on the errors,
I the least-squares estimator.

In fact, these different problems are not as far apart as they seem a priori
because the models used belong to the same family of models: the linear
model.

1.3 Modeling Qualitative Variables

We can also be interested in studying a quantitative variable: for instance,
individuals’ smoking or non-smoking character.

1.3.1 Comparative Study of Two Populations

We would like to conclude about the dependence of two qualitative vari-
ables. For example, we would like to know if men generally smoke more
than women. Table 1.3 gives the numbers of each of the gender/smoker
cross-tabulations.

To do this, we can, for example, set up a chi-squared test of independence
(See Listing 1.3). We conclude negatively about the independence of the
variables. In Chapter 4, we will study the so-called chi-squared test.

Note: At this point, we cannot conclude that men smoke more than
women, only that there is a dependence between gender and smoking.
We need to go further in our statistical study to answer the stated
question.
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1.3.2 Logistic Regression

Last, let us now consider the case where the response variable . is
qualitative, and we wish to explain this variable . according to some
regressors I(1) , . . . , I(<). Here are some illustrative examples:

Example 1.1 An insurance company seeks to detect fraudulent files.
To do so, it has a panel of = files. To each of these files is associated the
value 0 (for fraudulent file) or 1. After selecting the most interesting
characteristics (household debt, social origin, place of residence, etc.),
it determines to what extent these variables influence the probability
of fraud. In this way, it hopes to be able to detect possible “sensitive”
files in the future. We are in the case of a binary response variable ..

Example 1.2 We seek to explain the number of plant species growing
in different locations as a function of the biomass of those locations
and the soil pH. The response variable . here takes its values in N.

In the case of a binary response variable, we observe the vector . =

(.1 , . . . , .=), where .8 ∼ ℬ(�8) for all 8 ∈ J1, =K. Given the < regressors
I(1) , . . . , I(<), it seems quite natural to use the following model:

∀8 ∈ J1, =K , E[.8] = �8 =
<∑
9=1

0 9I
(9)
8
.

However, as we are trying to model and predict probabilities, this
approach does not seem very recommended as some predicted values
might not belong to the interval [0, 1]. So instead, we will try to model
a function of �8 by a linear combination of the explanatory variables
(I(9)
8
)9 . For example, in the context of logistic regression, we consider the

link function 6 : ]0, 1[ → R defined by

∀C ∈ ]0, 1[ , 6(C) = ln
(

C

1 − C

)
,

and we model
∀8 ∈ J1, =K , 6(�8) =

<∑
9=1

0 9I
(9)
8
.

More generally, it is possible to consider other distributions for the
variable . and other link functions. For example, the regression model
discussed at the beginning of this chapter corresponds to a Gaussian
distribution and a canonical (identity) link function. We will see that it
is possible to study all these models by the same path: the generalized
linear model.

1.4 Data Visualization

We have provided some descriptive statistics in the previous paragraphs
to better understand our data. Note that it is always a good idea to
actually visualize the data. Indeed, identical descriptive statistics can
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hide very different realities. For example, the 13 datasets (the Datasaurus,
plus 12 others) shown in Figure Figure 1.7 all have the same summary
statistics (G/H mean, G/H standard deviation, and Pearson’s correlation)
within two decimal placeswhile being drastically different in appearance.

Figure 1.7: The Datasaurus Dozen: Alberto
Cairo created the Datasaurus dataset
which urges people to “never trust sum-
mary statistics alone; always visualize
your data”, since, while the data exhibits
normal seeming statistics, plotting the
data reveals a picture of a dinosaur

Formore information, pleasevisit: autodesk.com/research/publications/same-
stats-different-graphs.

https://www.autodesk.com/research/publications/same-stats-different-graphs
https://www.autodesk.com/research/publications/same-stats-different-graphs
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In this first chapter, we propose to start by recalling the basic vocabulary
of test theory. However, for the sake of brevity, all the parametric tests
seen in 3rd year will not be recalled here.

A hypothesis test is a procedure for inferring (accepting or rejecting)
the validity of hypotheses about one or more populations based on the
study of one or more random samples. Statistical inference methods
allow us to determine, with a given probability, whether the differences
found in the samples can be attributed to chance or whether they are
large enough to mean that the samples are probably from different
populations.

There are several types of statistical tests:

I The conformity test compares a parameter calculated on the sample
with a pre-established value. In other words, we assume a theoret-
ical law, generally the normal distribution, and we want to check
if our sample conforms to this law. The best known are the tests
on mean, variance, or proportions.
For example, we know that the 3rd face of a non-piped die has
a chance of 1/6 to occur. We ask a player to throw, without any
particular precaution, a die 100 times. We then test if the frequency
of appearance of 3 is compatible with the 1/6 probability. If not, we
can question the integrity of the die.

I The goodness-of-fit test checks the compatibility of the data with a
distribution chosen a priori. The most commonly used test in this
context is the Gaussian distribution test, which allows a parametric
test to be applied.

I The homogeneity or comparison test tests that : > 2 samples are
from the same population. Alternatively, it amounts to testing
that the distribution of the variable of interest is the same in the :
samples.
For example: Is there a difference between the mean glucose level
measured for two samples of individuals who received different
treatments?

I The test of independence tests the existence of a link between two
variables. The techniques used differ depending on whether the
variables are nominal, ordinal, or quantitative.
Example: Is the distribution of eye color observed in the French
population independent of the sex of the individuals?

2.1 General Reminders on Statistical Tests

Let (Ω,A , P) be a probability space and - a random variable from
the set of possible outcomes (Ω,A) to a measurable space (�, ℰ). Let
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consider a statistical model, i. e. a set of probability distributions on
(�, ℰ): P = {P� , � ∈ Θ}. The setΘ defines the parameters of the model.
Last, let consider a =-sampleX = (-1 , . . . , -=)whose law is assumed to
belong to P.

A statistical hypothesis test is a method of statistical inference. The
principle of hypothesis testing is to pose a working hypothesis and to
predict the consequences of this assumption for the population. These
predictions are compared with the observations, and the conclusion
is reached by accepting or rejecting the hypothesis based on objective
decision rules.

2.1.1 Null Hypothesis & Alternative Hypothesis

The first step is to define two hypothesesℋ0 andℋ1, respectively called
null hypothesis and alternative hypothesis. We then consider two disjoint
subsets of Θ, Θ0 and Θ1, and we say that we test

ℋ0 : � ∈ Θ0 EB. ℋ1 : � ∈ Θ1 .

From the sample X, we then want to construct a decision rule (rejection
region) to discriminate between these two hypotheses.

Recall that theℋ0 andℋ1 hypotheses do not play a symmetrical role.
The null hypothesis is the preferred hypothesis that we wish to control:
it consists of saying that there is no difference between the compared
parameters or that the observed differences are not significant and due
to sampling fluctuations. This hypothesis is formulated with the aim
of being rejected. The alternative hypothesis,ℋ1, is the “negation” of
ℋ0 and is equivalent to saying “ℋ0 is false”. The decision to rejectℋ0
therefore means that ℋ1 is true. We refer to a simple hypothesis when
the associated subset is a singleton and to a composite hypothesis in the
opposite case.

Remark 2.1 There is an important asymmetry in the tests’ conclusions.
Indeed, the decision to acceptℋ0 is not equivalent to “ℋ0 is true and
ℋ1 is false”. It only reflects that there is no clear evidence thatℋ0 is
false. A test leads to rejecting or non-rejecting null hypothesis, never
to its straightforward acceptance.

The nature ofℋ0 determines thewayℋ1 is formulated and, consequently,
the one-sided or two-sided nature of the test. We speak of a two-sided
test when the alternative hypothesis is “decomposed into two parts”;
conversely, we refer to a one-sided test when the alternative hypothesis is
“composed of a single part".

Example 2.1 Denote ? the frequency of smokers among students and
?0 the frequency of smokers in the general population.

I To test whether the student population has a frequency of
smokers ? representative of the one in general population ?0,
we poseℋ0 : “? = ?′′0 andℋ1 : “? ≠ ?′′0 . The test considered is
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1: At least in English, since in French we
speak of “erreur de première espèce”.

then two-sided because the frequency ? can be higher or lower
than the frequency ?0;

I If we now assume that the frequency of smokers is higher in
the student population than in the overall population ?0, we
pose ℋ0 : “? = ?′′0 and ℋ1 : “? > ?′′0 . The test is then one-sided
because the frequency ? can only be higher than ?0.

It would also have been possible to haveℋ0 : “? = ?′′0 andℋ1 : “? < ?′′0 .
Refer to Table 2.2 for some examples.

Statistical Tests

Definition 2.1 (Statistical test) A statistical test consists of a partition of
Ω into two sets: the set ℛ of possible values of the sample that lead to the
rejection of the null hypothesis ℋ0 in favor of the alternative ℋ1, and its
complement.

We call ℛ the rejection region, or critical region, of the test and ℛ{
the region of acceptance. The threshold value delimiting the regions of
acceptance and rejection is called critical value.

Definition 2.2 (Statistical test function) We call test function of rejection
region ℛ the statistic )(G) = 1G∈ℛ .

In other words, if )(G) = 1, we reject ℋ0, and if )(G) = 0, we do not
rejectℋ0 (and so acceptℋ1).

2.1.2 Type I Error and ?-value

The first kind of error is the rejection of a true null hypothesis as the
result of a test procedure. We refer to this error as a type I error (false
positive) and, less frequently,1 error of the first kind.

This occurs if the value of the test statistic falls into the rejection region
while the ℋ0 hypothesis is true. The probability of this event is the
significance level . The significance level is also said to be the probability
of rejecting the null hypothesis incorrectly.

Let a test of rejection region ℛ to testℋ0 againstℋ1.

Definition 2.3 (Type I error) For all �0 ∈ Θ0, we define the type I error
function as

(�0) = P�0(X ∈ ℛ) .

The size of the test corresponds to the maximum type I error:

∗ = sup
�0∈Θ0

P�0(X ∈ ℛ) .
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Definition 2.4 (Alpha-level) Let  ∈ [0, 1]. We say that this test is:

I of  level if its size is at most , ∗ 6 ;
I of exactly  level if it is of  size;
I asymptotically of level  if lim sup<,=→+∞ ∗ 6 ;
I asymptotically of size  if lim<,=→+∞ ∗ = 

We also refer to alpha-levels as risk of the test. We usually set these levels
to 0.05, 0.01 or 0.001.

Remark 2.2 The value of the risk  should be set a priori by the
experimenter and never based on the data. It is a compromise between
the risk of concluding wrongly and the ability to conclude. The critical
region decreases as  decreases, and thusℋ0 is rejected less frequently.
If we want to make fewer errors, we conclude less frequently.

Example 2.2 (Coin) We want to determine if a coin is rigged or not.
Let - be the number of faces obtained by tossing the coin 100 times.
We put into equation the hypothesisℋ0 “the coin is not rigged” as
follows:ℋ0 : “- ∈ [40, 60]′′. In particular, this is a two-sided test since
ℋ0 is rejected if - < 40 or - > 60.
The type I risk of this test is  = P (ℬ(100, 1/2) ∈ [40, 60]), where
ℬ(=, ?) is the binomial distribution with number of trials = ∈ N, and
success probability ? ∈ [0, 1].

Suppose we have constructed for all  ∈ ]0, 1[ a test of level  and
rejection region ℛ, allowing to testℋ0 againstℋ1.

Definition 2.5 (?-value) We call ?-value of the tests’ family the smallest
level at which we rejectℋ0 from the observed sample Xobs:

?(Xobs) = inf
{
 ∈ ]0; 1[

�� Xobs ∈ ℛ
}
.

Intuitively, the ?-value is the probability of obtaining test results at least
as extreme as the observed results, assuming that the null hypothesis
is correct. In other words, a small ?-value means that such an extreme
observed outcomewould be very unlikely under the null hypothesis. The
smaller the ?-value, the stronger the evidence in favor of the alternative
hypothesis: the ?-value provides the lowest significance level at which
the null hypothesis would be rejected. In particular, the ?-value is not the
probability that the test hypothesis is true. The ?-value “only” indicates
howwell the data conform to the test hypothesisℋ0 and the assumptions
made about it, i.e. the underlying statistical model.

Remark 2.3 (Misuse of ?-values) The ?-values are often used or
interpreted incorrectly. For a more detailed explanation, you can refer
to the following sourced Wikipedia article: https://en.wikipedia.
org/wiki/Misuse_of_p-values. Let us mention here the points that
are generally misunderstood about ?-values:

https://en.wikipedia.org/wiki/Misuse_of_p-values
https://en.wikipedia.org/wiki/Misuse_of_p-values
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Table 2.1: Error types according to the
truthfulness of the null hypothesis and
the outcome of the test.

H 0 True False

Accept Correct Type II
? = 1 −  ? = �

Reject Type I Correct
? =  ? = 1 − �

1. The ?-value is not the probability that the null hypothesis is true,
or the probability that the alternative hypothesis is false;

2. The ?-value is not the probability that the observed effects were
produced by random chance alone;

3. The 0.05 significance level is merely a convention;
4. The ?-value does not indicate the size or importance of the

observed effect.

2.1.3 Type II Error and Power

Alternatively, the second type of error is the non-rejection of a false null
hypothesis (false negative). This is known as type II error or error of the
second kind.

This occurs if the value of the test statistic does not fall into the rejection
region while hypothesis ℋ1 is true. Table 2.1 presents the different
possible error scenarios.

Let a test of rejection region ℛ to testℋ0 againstℋ1.

Definition 2.6 (Type II error) For all �1 ∈ Θ1, we define the type II error
function as

�(�1) = P�1(X ∉ ℛ)

and the maxima type II error is

�∗ = sup
�1∈Θ0

P�1(X ∉ ℛ) .

Remark 2.4 To quantify the risk �, we need to know the probability
distribution of the statistic under assumptionℋ1

Example 2.3 (Coin) Go back to the previous example with the coin.
We suppose the probability of getting a face is 0.6 for a rigged
coin. By adopting the same decision rule for ℋ0, the type II risk is
� = P (ℬ(100, 0.6) ∈ [40, 60])

Definition 2.7 (Power function) We call power function of the test of
rejection region ℛ the application defined by:

� : �1 ∈ Θ1 ↦−→ P�1(X ∈ ℛ) = 1 − �(�1) ∈ [0, 1] .

Obviously, as the power increases, the probability of a type II error
decreases. In particular, among tests of the same level, the most powerful
is always preferred.

Remark 2.5 The power of a test depends on the nature of ℋ1: A
one-sided test is more powerful than a two-sided test. The power 1− �
increases with the size of the sample studied, and it decreases when
the significance  decreases. Therefore, a trade-off between power and
significance is necessary when conducting a statistical test procedure.
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α
x

β

x

Critical value, α = 0.05

Fail to reject H0 Reject H0

H0

H1

Type I error:
Rejecting a
true null.

“False positive”

Type II error:
Retaining a
false null.

“False negative”
Power

1− β

Figure 2.1: Statistical power of a test.

2: In French, we speak of “test UPP” for
“Test uniformément plus puissant”.

Table 2.2: Alternative hypotheses and re-
jection region associated with the null as-
sumption H 0 : “t = t′′0 depending on
whether the test is one- or two-sided.

Alternative Rejection
hypothesis region

on
e- ℋ1 : “C > C′′0 ℛ = {( > (★}

ℋ1 : “C < C′′0 ℛ = {( < (★}

tw
o- ℋ1 : “C ≠ C′′0 ℛ = {|( | > (★}

Figure 2.1 summarises this situation.

A test based on the rejection region ℛ is said to be better than one based
on the rejection region ℛ′ if they are both of  level and

∀� ∈ Θ1 , P�(X ∈ ℛ) > P�(X ∈ ℛ′) .

Definition 2.8 (Uniformly most powerful) A test based on the rejection
region ℛ is said to be uniformly more powerful (UMP) at level  if

1. sup�∈Θ0
P�(X ∈ ℛ) 6  ;

2. For all rejection region ℛ′ such that sup�∈Θ0
P�(X ∈ ℛ′) 6 ,

∀� ∈ Θ1 , P�(X ∈ ℛ) > P�(X ∈ ℛ′)

In other words, a uniformly most powerful test has the greatest power
1 − � among all possible tests of a given size . Please note that there is
not always a UMP2 test.

2.1.4 Methodological Considerations

A statistic (Definition 2.2) is a function of the random variables represen-
tative of the sample. The choice of the statistic depends on the nature of
the data, the type of hypothesis that we wish to control, the assumptions
that we can make about the populations studied... The numerical value
of the statistic obtained for the considered sample allows us to judge the
veracity ofℋ0.

Assume that the probability distribution followed by the (-statistic
under ℋ0 is known. At a given probability , it is then possible to
establish a threshold value (★ of the statistic. Hence, by choosing the
value of  as the significance level (Definition 2.4), the critical region
ℛ((★) corresponds to the set of values such that P(( ∈ ℛ) = . The
definition of the critical region varies depending on whether the test is
one- or two-sided (See Table 2.2).

There are two strategies for reaching a decision regarding the test of
interest: the first strategy sets the value of the significance level  a priori,
and the second sets the value of the critical probability obs a posteriori.

Decision Rule #1: Under the assumption “ℋ0 is true” and for a fixed
significance level ,

I If the value of the computed statistic (obs belongs to the critical
region ℛ, then assumptionℋ0 is rejected at the risk of error  and
hypothesisℋ1 is accepted;

I If the value of the statistic (obs does not belong to the critical
region, then hypothesisℋ0 cannot be rejected.
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Decision Rule #2: We evaluate the critical probability obs such that
P(( ∈ ℛobs) = obs, where ℛobs is the observed counterpart of the
rejection region ℛ, for instance ℛobs = {|( | > (obs} for a two-sided test.
For a fixed significance level ,

I If obs > , we accept assumptionℋ0 since the risk of rejecting
ℋ0 while it is true is too large;

I If obs < , we reject theℋ0 hypothesis because the risk of rejecting
ℋ0 while it is true is very low.

2.2 Parametric Tests (MIC 3)

Different statistical tests have been studied in the MIC3 Statistics UF. To
construct all these tests, we assume that the law of the samples belongs
to a parametric model, i. e. to a given family of laws described by a finite
number of parameters. We then speak of parametric tests. Since these
tests depend crucially on the nature of the statistical distribution of the
observations, certain validity conditions must be satisfied to ensure their
reliability. For example, the Student’s t-test for independent samples is
only reliable if the data associated with each sample follow a normal
distribution and if the variances of the samples are homogeneous.

In practice, assumptions can be difficult to test. Non-parametric tests
remove this limitation by offering a family of tests that are not based on
statistical distributions. Therefore, they can be used whatever the distri-
bution of the samples and even if the validity conditions of parametric
tests are not verified.

Non-parametric tests are more robust than parametric tests. In other
words, they can be used in a broader range of situations. However,
parametric tests are, in general, more powerful than their non-parametric
counterparts: A parametric test will be more likely to lead to a rejection
ofℋ0, if this rejection is justified. Therefore, when parametric tests are
valid, they should be favored over their non-parametric counterparts.
Non-parametric tests are used when the conditions for the application
of other methods are not met, even after a possible transformation of
the variables. They can be used even for very small sample sizes.
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In this chapter, our aim is twofold: to estimate the distribution of a
random variable and to address the testing problems that arise from it.
To tackle these issues, we will seek to estimate the distribution function
of this variable. We are thus facing a non-parametric statistical problem,
which we will try to solve using the notion of empirical distribution
function.

3.1 Empirical Distribution Function

Recall that the cumulative distribution function (cdf) of a real-valued
random variable - is the function given by

� : G ∈ R ↦−→ P(- 6 G) .

This function is characteristic of the probability distribution of the
random variable. We will therefore try to estimate it by introducing the
notion of empirical distribution function.

3.1.1 Quantile Function

Let � be a cumulative distribution function of a random variable -.

Definition 3.1 (Quantile function) For all probability ? ∈ [0, 1], we
define the quantile function of � as its generalized inverse, i. e.:

�←(?) := inf {G ∈ R | �(G) > ?} .

In other words, the quantile function �← returns a threshold value G
below which random draws from the given cdf would fall ? percent of
the time. It is also called the percent-point function or inverse cumulative
distribution function.1

Roughly speaking, a quantile of order ? is a value where the graph of
the distribution function crosses (or jumps over) ?.

Remark 3.1 If � is a invertible, �← is the inverse function �−1.

Exercise 3.1 Compute �← for the Bernoulli distribution of parameter �.
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Figure 3.2: Gaussian quantile function

2: Càdlàg: French: “continue à droite, lim-
ite à gauche”.

The evaluation of quantile functions often involves numerical methods,
and there are only a few distributions for which a closed-form expression
can be found. When the cdf itself has a closed-form expression, one can
use a numerical root-finding algorithm such as the bisection method.
Otherwise, several approximation methods have been developed.

Example 3.1 (Gaussian distribution) The quantile function of the
normal distribution itself does not admit a closed-form representation.
Indeed, for arbitrary parameters, its quantile function can be derived
from a simple transformation of the quantile function of the standard
normal distribution, known as the probit function.

Proposition 3.2 Let G ∈ R, ? ∈ ]0, 1[ and � be a cumulative distribution
function.

1. � is non-decreasing and right-continuous, which makes it a càdlàg2

function; lim
G→−∞

�(G) = 0, lim
G→+∞

�(G) = 1 ;

2. {G ∈ R|�(G) > ?} = [�←(?),+∞[ ;

3. �← is non-decreasing;

4. � ◦ �←(?) > ?, with equality if ? ∈ ℐ<(�) ;

5. �(G) > ? if and only if G > �←(?) .

Remark 3.2 (French vs English) Attention! In English non-decreasing
means “croissant” and increasing “strictement croissant”. The same
goes for non-incresing and decreasing.

Proposition 3.3 Let - be a random variable with cumulative distribution
function �.

1. Assume that � is continuous. Then �(-) ∼ U([0, 1]) ;
2. If * ∼ U([0, 1]), then �←(*) admits � as its cumulative distribu-

tion function.

Proof. Let* ∼ U([0, 1]). Note that for all ? ∈ [0, 1] and G ∈ R,

�←(?) 6 G ⇐⇒ ? 6 �(G) .

Hence,
P

[
�−1(*) 6 G

]
= P [* 6 �(G)] = �(G) ,

and - = �−1(*) admits � as its cumulative distribution function.

Proposition 3.3 makes it possible to simulate random variables with a
given distribution, as soon as we know how to calculate �−1.
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Figure 3.3: Empirical distribution func-
tion of the observed sample (2, 3.5, 1, 4,
2.3, 6, 5.5)

Exercise 3.4 How to simulate a random variable distributed according to
the exponential distribution of parameter �? A Bernoulli random variable of
parameter �?

3.1.2 Empirical Distribution Function

Let a =-sample (-1 , -2 , . . . -=) of real i.i.d. random variables whose
cumulative distribution function is given by �.

Definition 3.2 (Empirical distribution function) We call empirical dis-
tribution function associated to the =-sample (-1 , -2 , . . . -=) the function

�̂= : R −→ [0, 1]

G ↦−→ 1
=

=∑
8=1

1-86G .

Remark 3.3 (Order statistics) The empirical distribution function
of (-1 , -2 , . . . -=) can also be expressed from the order statistics
(-(1) 6 -(2) 6 . . . 6 -(=)), where

{-(1) , -(2) , . . . , -(=)} = {-1 , -2 , . . . -=} .

We have:
�̂=(G) =

1
=

=∑
8=1

1-(8)6G .

This makes it easy to plot its graph: The function �̂= is trivially an
non-decreasing step function, discontinuous at the points (-(8))8∈J1,=K

and constant on [-(8) , -(8+1)[ for all 8 ∈ J1, = − 1K (cf. Figure 3.3).

Be careful! The variables -8 are random. Therefore, to plot the graph of
the empirical distribution function, we first need to observe a realization
of these random variables. We refer to it as the observed empirical
distribution function.

Proposition 3.5 Let G ∈ R.

1. �̂= is càdlàg, non-decreasing, lim
G→−∞

�̂=(G) = 0, lim
G→+∞

�̂=(G) = 1 ;

2. =�̂=(G) follows a binomial distribution with parameter (=, �(G)).
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Link with the cumulative distribution function.

Let �̂= be the empirical distribution function associated with the =-
sample (-1 , -2 , . . . -=) of cumulative distribution function �. As its
name suggests, the function �̂= is a natural estimator of �; the following
proposition makes this idea explicit.

Proposition 3.6 Let G ∈ R.

1. �̂=(G) is an unbiased estimator of �(G) , E
[
�̂=(G)

]
= �(G) ,

and V0A
(
�̂=(G)

)
=
�(G) (1 − �(G))

=
−→
=→+∞

0 ;

2. �̂=(G)
P−→

=→+∞
�(G) ;

3. For all G ∈ R such that �(G) (1 − �(G)) ≠ 0,

√
=

(
�̂=(G) − �(G)

) ℒ−→
=→+∞

 (0, �(G) (1 − �(G))) .

Proof. 1. V0A
(
=�̂=(G)

)
= =�(G) (1 − �(G)) ;

2. By Chebichev’s inequality,

∀� > 0 P
(
|�̂=(G) − �(G)| > �

)
6

1
�2V0A

(
�̂=(G)

)
−→
=→+∞

0 ;

3. The last statement follows from the central limit theorem.

We are now no longer interested in simple pointwise convergence of Fn
to F but in uniform convergence.

Theorem 3.7 (Glivenko–Cantelli)

sup
G∈R
|�̂=(G) − �(G)|

0.B.−→
=→+∞

0 .

Proof. The strong law of large numbers applied to i.i.d random variables
1-86G (bounded and therefore integrable) such that E[1-86G] = P(-8 6
G) = �(G) leads to the almost sure convergence of �̂= to �. It remains to
prove that the convergence is uniform in G. Let = ∈ N∗, we pose:

�= = sup
G∈R

����� 1
=

=∑
8=1

1-86G − �(G)
����� .

Let (*=))=∈N be a sequence of independent and identically distributed
random variables of lawU([0, 1]). We then have the following equations,
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in law:

�= = sup
G∈R

����� 1
=

=∑
8=1

1{�−1(*8 )6G} − �(G)
����� = sup

G∈R

����� 1
=

=∑
8=1

1{*86�(G)} − �(G)
�����

= sup
H∈�(R)

����� 1
=

=∑
8=1

1{*86H} − H
����� 6 sup

H∈[0,1]

����� 1
=

=∑
8=1

1{*86H} − H
����� .

Therefore, it is sufficient to prove that the theorem is true in the special
case where the variables -8 = *8 follow uniform laws on [0, 1]. Thanks
to the law of large numbers, we know that for any H ∈ R, there exists a
negligible set #H ⊂ Ω satisfying:

∀$ ∈ Ω \ #H ,
=∑
8=1

1{*86H} → H .

A countable union of negligible sets being negligible, we deduce the
existence of of a negligible subset # ⊂ Ω such that

∀$ ∈ Ω \ #, ∀H ∈ [0, 1] ∩Q,
=∑
8=1

1{*86H} → H .

And using the growth of H ↦→ ∑=
8=1 1{*86H}, it follows that:

∀$ ∈ Ω \ #, ∀H ∈ [0, 1],
=∑
8=1

1{*86H} → H .

In other words, for any $ ∈ Ω \ # , ∑=
8=1 1{*86H} converges pointwise

toward H on [0, 1]. The Dini theorem then ensures uniform convergence
(on the compact [0,1], the functions under consideration being continuous
and monotone).

The Glivenko-Cantelli theorem expresses the extent to which a proba-
bility law can be revealed by the knowledge of a large sample of this
probability law. In other words, it is a generalization of the strong law of
large numbers to the non-parametric case.

3.2 Kolmogorov Adequacy Test

Let - be a random variable whose cumulative distribution function
� is assumed to be continuous. Let -1 , . . . , -= be real i.i.d. random
variables with distribution function �. In particular, they have the same
distribution as -.

Let a cumulative distribution function �0 also supposed to be continuous
on R and . a real random variable of distribution function �0. We aim
to construct a test ofℋ0: “- and . have the same distribution: � = �0”
against

ℋ1: “- and . do not follow the same distribution: � ≠ �0”;
ℋ+1 : “- tends to take smaller values than .: � > �0”;
ℋ−1 : “- tends to take larger values than .: � 6 �0”.
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3: For comparison, this is the same rate
of convergence as that of the empirical
mean to the true mean in the case of an
i.i.d. square-integrable sample.

Example 3.2 (Bulb life) We measure the lifetimes of 20 bulbs of the
same type. The results, in hours, are: 673, 389, 1832, 570, 522, 2694,
3683, 644, 1531, 2916. Can we affirm, with a 5% risk, that the life of a
bulb of this type does not follow the exponential law ℰG?(1/1500)?
We model the life of the 8-th bulb by -8 , � is its unknown distribution
function, and �0 is the distribution function of the law ℰG?(1/1500).

Based on the Glivenko-Cantelli theorem, the key idea of the Kolmogorov
test is to estimate the unknown distribution function � by the empirical
distribution function �̂= of the sample (-1 , . . . , -=) and to compare this
empirical distribution function with the given cumulative distribution
function �0.

Definition 3.3 (Kolmogorov test) The Kolmogorov test is defined by
the test statistic

�= = �=(�̂= , �0) = sup
G∈R
|�̂=(G) − �0(G)| .

It consists of rejecting theℋ0 hypothesis if �= > 3=,1−. In other words, its
rejection region at level  is of the form ℛ = {�= > 3=,1−}.

Proposition 3.8 The distribution of �= under the hypothesisℋ0: “� = �0”
is independent of �0.

Exercise 3.9 Using the growth of �, prove Proposition 3.8.

This result is of major practical importance! Indeed, it ensures that
for � continuous, we can tabulate the distribution of �= . See the next
paragraph.

Theorem 3.10 (admitted) below provides a generalization of the central
limit theorem. It allows to check the convergence of the test statistic of
the Kolmogorov test.

Theorem 3.10 For all � ∈ R∗+ ,

I Smirnov (1942): Pℋ0(
√
=�+= 6 �) −→

=→+∞
e−2�2

;

I Kolmogorov (1933): Pℋ0(
√
=�= > �) −→

=→+∞
2
+∞∑
:=1
(−1):+1 e−2 :2�2

;

I Massart (1990): Pℋ0(
√
=�= 6 �) 6 2 e−2�2

.

In other words, under ℋ0, �= will approach 0 at a 1√
=
rate when

= → +∞.3 Moreover, the Kolmogorov test is consistent against all
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alternatives:

Corollary 3.11 A test ofℋ0 : “� = �′′0 , based on Kolmogorv procedure is
consistent against all alternativesℋ1 : “� ≠ �′′0 as = go to +∞, i. e.ℋ0 will
be (correctly) rejected.

Proof. I Under ℋ1 : “� ≠ �′′, by the Glivenko–Cantelli theorem,
the statistic �= will converge toward supG∈R |�(G) − �(G)| > 0, so√
=�= will become infinite. Hence, for all � ∈ R∗+,

Pℋ1(
√
=�= > �) −→

=→+∞
1 .

I Whereas, underℋ0 : “� = �′′, by the Kolmogorov theorem (Theo-
rem 3.10), the probability Pℋ1(

√
=�= > �) is small for � “large”.4

4: For � = 1.36 the right therm of Kol-
mogorov formula is equal to 0.05.

Methodological considerations

Remark 3.4 Let -(1) 6 ... 6 -(=) be the ordered sample. We set
-(0) = −∞ and -(=+1) = +∞. Since �̂= is a step function and �0 is
non-decreasing, the maximum gap between �̂= and �0 is reached in
one of the jumps of �̂= (See Figure 3.4 for an illustration). Thus,

�= = max
8∈J0,=K

{
max

( ���� 8= − �0(-(8))
���� ;

���� 8= − �0(-(8+1))
���� ) }

,

which makes it easy to compute �= .

The distribution of �= underℋ0 is tabulated. We find in the tables the
quantiles 3=,1− such that

Pℋ0 (�= > 3=,1−) 6  ,

(being as close as possible to ). These tables are obtained from simu-
lations of �= , under the assumption that the -8 are i.i.d. samples from
the uniform distributionU([0, 1]), i. e. �0 = 1[0,1]. The independence of
�= in �0 (Proposition 3.8) is crucial for the construction of these tables.
Indeed, if this were not the case, we would have to construct a table for
each possible �0 distribution.

This test is asymptotically of level  and its power tends to 1 when =
tends to +∞.

One-sided test.

In the same way, to test:

I ℋ0: “� = �0” againstℋ+1 : “� > �0”, we use the test statistic

�+= = sup
G∈R

(
�̂=(G) − �0(G)

)
,

and we rejectℋ0 if �+= > 3+=,1− ;
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Figure 3.4: Empirical distribution func-
tion and cumulative distribution function
of the ℰG?(1/1500) distribution for the
example of light bulbs.

Listing 3.1: Kolmogorov test for the study
of bulb life.

> Bulbs = c(673, 389, 1832,

570, 522, 2694, 3683,

644, 1531, 2916)

> ggplot(data.frame(Bulbs),

aes(Bulbs))

+ stat_ecdf(geom = "step")

+ stat_function(fun = pexp,

args = list(rate = 1/

1500))

> ks.test(Bulbs,pexp,1/1500,

alternative="two.sided")

One-sample Kolmogorov-

Smirnov test

data: Bulbs

D = 0.22843, p-value = 0.597

alternative hypothesis: two-

sided

α/2α/2

1−α

0 tn,α−tn,α

Rejection
region

Rejection
region

Cannot reject null hypothesis

t

Figure 3.5: Student’s t-test.

I ℋ0: “� = �0” againstℋ−1 : “� 6 �0”, we use the test statistic

�−= = sup
G∈R

(
�0(G) − �̂=(G)

)
,

and we rejectℋ0 if �−= > 3−=,1− .

Likewise, the quantiles are read from the tables.

Example 3.3 (Bulb life, continuation of Example 3.2) The empirical
distribution function and the distribution function of the distribution
ℰG?(1/1500) are shown in Figure 3.4. We establish a Kolmogorov test
to testℋ0: “� = �0” againstℋ1: “� ≠ �0”, where �0 is the distribution
function of the exponential distribution ℰG?(1/1500), and using the
ks.test function (See Listing 3.1).
The p-value being 0.597, we do not reject the null hypothesis at the
5% risk level.

Other tests based on the empirical distribution function.

There are other tests based on the empirical distribution function. The
Cramer Von Mises test uses for example the statistic

�= = =

∫ +∞

−∞

(
�̂=(G) − �0(G)

)2
50(G) dG ,

and the Anderson Darling test uses the test statistic

�= = =

∫ +∞

−∞

(
�̂=(G) − �0(G)

)2 50(G)
�0(G)(1 − �0(G))

dG .

As for the Kolmogorov test, we show that the laws of �= and �= are
independent of �0 underℋ0, and these laws are therefore tabulated.

3.3 Comparison Tests of Two Samples

In the same spirit, we will construct a homogeneity test. We observe two
independent samples of size = and <:

I -1 , . . . , -= i.i.d. with cumulative distribution function �;
I .1 , . . . , .< i.i.d. with cumulative distribution function �.

We want to test if the two samples are from the same distribution. In
the case of two Gaussian samples, namely � and � corresponding to the
normal distributions (<- , �2

-
) and (<. , �2

.
) respectively, we can

use a Student’s t-test to distinguish betweenℋ0 : � = � andℋ1 : � ≠ �
(see the 3rd year course). We do not return to this framework here and
place ourselves in a non-parametric setting. In other words, we do not
assume anymore that we know the laws of the variables -8 and .9 .
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3.3.1 Kolmogorov-Smirnov Test

In this section, we aim to testℋ0 : � = � againstℋ1 : � ≠ �. We note
�̂= the empirical distribution function of the sample (-1 , . . . , -=) and
�̂< the one of the sample (.1 , . . . , .<).

Definition 3.4 (Kolmogorov-Smirnov test) The Kolmogorov-Smirnov
test is defined by the test statistic

�(=,<) = sup
G∈R
|�̂=(G) − �̂<(G)| .

It consists of rejecting theℋ0 hypothesis if�(=,<) > 3=,<,1−. In other words,
its rejection region at level  is of the form ℛ = {�(=,<) > 3=,<,1−}.

We preserve the existence of tables as for the Kolmogorov test as shown
in Proposition 3.12.

Proposition 3.12 . If � is continuous, the distribution of �(=,<) under the
null hypothesis � = � is independent of �.

This distribution is therefore tabulated.

Proof. Proceed as for Proposition 3.8.

By the Glivenko–Cantelli theorem, ifℋ0 holds, then �(=,<) → 0 almost
surely as < and = both go to +∞. Therefore, we can hope that test of
ℋ0 based on a suitable multiple of �(=,<) → 0 will have the same, or
at least a similar, asymptotic distribution as

√
=�= . More precisely, the

correct convergence rate is
√

=<
=+< , and we have the following uniform

convergence result.

Theorem 3.13 For all � ∈ R∗+, underℋ0 : “� = �′′

I If � = � is continuous,

lim
<,=→+∞

Pℋ0

(√
=<

= + <�(=,<) > �

)
= 2

+∞∑
:=1
(−1):+1 e−2 :2�2

;

I If � = � is not continuous,

lim sup
<,=→+∞

Pℋ0

(√
=<

= + <�(=,<) > �

)
6 2

+∞∑
:=1
(−1):+1 e−2 :2�2

.

Corollary 3.14 A test of ℋ0 : “� = �′′, based on Kolmogorv-Smirnov
procedure is consistent against all alternativesℋ1 : “� ≠ �′′ as < and =
both go to +∞, i. e.ℋ0 will be (correctly) rejected.

Proof. Proceed as for Corollary 3.11.
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Table 3.1: Pain relief. Time (in hours) be-
tween taking the drug and feeling relief.

Drug � Drug �

6,8 4,4
3,1 2,5
5,8 2,8
4,5 2,1
3,3 6,6
4,7 1,5
4,2 4,8
4,9 2,3

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7
Hours

Drug A
Drug B

Figure 3.6: Empirical distribution func-
tion for drugs A and B.

One-sided test.

To do a one-sided test (ℋ0 : � = � vs. ℋ1 : � > �), we use the test
statistic

�+(=,<) = sup
G∈R

(
�̂=(G) − �̂<(G)

)
,

associated with the rejection region ℛ = {�+(=,<) > 3
+
=,<,1−}.

Example 3.4 (Comparative of analgesics) We would like to compare
two drugs for postoperative pain relief. We observed 16 patients, 8 of
whom took the usual drug �, and the other 8 an experimental drug �.
In Table 3.1, the time (in hours) between the taking of the drug and
the feeling of relief is reported. The empirical distribution functions
of the two samples are shown in Figure 3.6.

I Is there a difference in efficiency between the two drugs?
To answer this question, we testℋ0 : �� = �� againstℋ1 : �� ≠
��, where �� and �� are the cumulative distribution functions
associated with samples � and � respectively.

> ks.test(dB, dA, alternative="two.sided")

Two-sample Kolmogorov-Smirnov test

data: dB and dA

D = 0.625, p-value = 0.08702

alternative hypothesis: two-sided

I Is drug � more effective than drug �?
We now testℋ0 : �� = �� againstℋ1 : �� > ��.

> ks.test(dB, dA, alternative="greater")

Two-sample Kolmogorov-Smirnov test

data: dB and dA

D^+ = 0.625, p-value = 0.04394

alternative hypothesis: the CDF of x lies above that of y

3.3.2 Wilcoxon-Mann-Whitney Test

In this section, we will focus on the Wilcoxon-Mann-Whitney tests based
on ranks. This is a test of whether two samples come from the same
distribution, against the alternative that members of one sample tend to
be larger than those of the other sample (a location or shift alternative).
No parametric form of the distributions is assumed. They can be quite
general, as long as the distribution functions are continuous. There are
two formulations of the test, one due to Mann and Whitney and the
other to Wilcoxon; R uses the Mann–Whitney form.

To simplify the presentation, we will first assume that there are no match
in the two samples:

I the -8 are all distinct,
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I the .9 are all distinct,
I the -8 are distinct from the .9 .

We will come back to the case of ex-aequo in Section 3.3.2.3.

3.3.2.1 Mann-Whitney* Test

The hypothesis to be tested, as in the Kolmogorov–Smirnov test, isℋ0:
“� = �’. The principle of the Mann-Whitney test is to determine the
number of pairs (-8 , .9) for which .9 > -8 . Thenℋ0 will be rejected if
either this count is too large, indicating that the -’s tend to be less than
the .’s, or if the count is too small, indicating that the .’s tend to be less
than the -’s.

Suppose we want to testℋ0: “� = �” againstℋ+1 : “� > �”, and that �
and � are continuous. Underℋ+1 , for all G,

�(G) = P(. 6 G) 6 P(- 6 G) = �(G) ,

with sometimes strict inequality. So, for all G, P(. > G) > P(- > G), and
the number of pairs (-8 , .9) for which .9 > -8 takes larger values under
ℋ+1 than underℋ0.

Definition 3.5 (Mann-Whitney* test) TheMann-Whitney test forℋ0:
“� = �” vs.ℋ+1 : “� > �” is the test defined from the statistic

*-<.

(=,<) =
=∑
8=1

<∑
9=1

1-8<.9 .

The test consists of rejectingℋ0 if*-<.

(=,<) > D
-<.

(=,<),1−. In other words, its

rejection region at level  is of the form ℛ =

{
*-<.

(=,<) > D
-<.

(=,<),1−

}
.

The law of *-<.

(=,<) under ℋ0 can be established by recurrence (cf [2,
p. 126]). We note:

∀: ∈ J1, <=K, ?(=,<)(:) = Pℋ0(*-<.

(=,<) = :) ,

?(=,0)(0) = ?(0,<)(0) = 1 , and ∀: ∈ N∗ , ?(=,0)(:) = ?(0,<)(:) = 0 .

Then for all k,

(= + <)?(=,<)(:) = =?(=−1,<)(:) + <?(=,<−1)(: − =) .

This recurrence formula allows to compute the law of*-<.

(=,<) under the
null hypothesisℋ0. In other words, for < and = not too large, one can
tabulate the distribution.

For large = and <, we can also use the (admitted) following asymptotic
result:
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Theorem 3.15 (Hajek (1968)) Underℋ0,

*-<.

(=,<) − Eℋ0

[
*-<.

(=,<)

]
√
V0Aℋ0

(
*-<.

(=,<)

) ℒ−→ (0, 1) ,

when
= → +∞ and

=

= + < → � ∈ ]0, 1[ .

In practice, we use this result if =, < > 8. Under assumption ℋ0, it
comes

Eℋ0

[
*-<.

(=,<)

]
=
<=

2
and V0Aℋ0

(
*-<.

(=,<)

)
= <=

(
= + < + 1

12

)
.

A similar reasoning can be used to testℋ0: “� = �” againstℋ−1 : “� 6 �”.
In this case the number of pairs (-8 , .9) for which .9 < -8 takes larger
values underℋ−1 than underℋ0.

Definition 3.6 (Mann-Whitney* test) TheMann-Whitney test forℋ0:
“� = �” vs.ℋ−1 : “� 6 �” is the test defined from the statistic

*->.

(=,<) =
=∑
8=1

<∑
9=1

1-8>.9 .

Its rejection region at level  is of the form ℛ =

{
*->.

(=,<) > D
->.

(=,<),1−

}
.

The *->.

(=,<) statistic checks properties similar to those of *-<.

(=,<) seen
above. Moreover, since there are <= total pairs,*->.

(=,<) +*
-<.

(=,<) = <=.

Finally, in the case of a two-sided test ofℋ0: “� = �” versusℋ1: “� ≠ �”,
we combine the two previous tests.

Definition 3.7 (Mann–Whitney* test) TheMann-Whitney test forℋ0:
“� = �” vs.ℋ1: “� ≠ �” is the test defined from the statistic

*(=,<) = max
(
*-<.

(=,<) , *
->.

(=,<)

)
.

Its rejection region at level  is of the form ℛ =
{
*(=,<) > D=,<,1−

}
.

In particular,*(=,<) = min
(
*-<.

(=,<) , <= −*
-<.

(=,<)

)

3.3.2.2 Wilcoxon Rank-Sum Test

Let’s come back to theℋ0: “� = �” versusℋ+1 : “� > �”. There is another
equivalent form of the Mann-Whitney* test, called the Wilcoxon rank-
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sum test.

Let # = = + < and

/ = (/1 , . . . , /= , /=+1 , . . . , /# ) = (-1 , . . . , -= , .1 , . . . , .<)

the full sample. We define ('1 , . . . , '<), where ' 9 is the rank of .9 in
the ordered full sample

' 9 = 1 +
#∑
:=1

1/:<.9 .

Definition 3.8 (Wilcoxon rank-sum test) TheWilcoxon statistic consists
in computing the sum of the ranks of the individuals in the second sample

,.

(=,<) =
<∑
9=1

' 9 .

Since we have the relation

*-<.
(=,<) = ,.

(=,<) −
<(< + 1)

2
,

both statistics lead to the same test.

Similarly, one can construct the Wilcoxon test statistic,-

(=,<), sum of
ranks of -8 in /, related to the test statistic *->.

(=,<) to test ℋ0: “� = �”
versusℋ−1 : “� 6 �”.

Finally, note that we have the following relationship:

,-

(=,<) +,
.

(=,<) =
#∑
:=1

: =
#(# + 1)

2
.

Example 3.5 (Comparative of analgesics, continued from Example 3.4)
We continue with the study of analgesics. We want to test if drug � is
more effective than drug �, i. e.ℋ0: “�� = ��” versusℋ1: “�� > ��”.

We then observe the complete ordered sample

I = (1.5, 2.1, 2.3, 2.5, 2.8, 3.1, 3.3, 4.2,
4.4, 4.5, 4.7, 4.8, 4.9, 5.8, 6.6, 6.8)

= (�6 , �4 , �8 , �2 , �3 , �2 , �5 , �7 ,

�1 , �4 , �6 , �7 , �8 , �3 , �5 , �1)

The observed ranks for the values of � are therefore

'1 = 9, '2 = 4, '3 = 5, '4 = 2, '5 = 15, '6 = 1, '7 = 12, '8 = 3,
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Listing 3.2: Wilcoxon rank-sum test

> wilcox.test(dB,dA,

alternative="less")

Wilcoxon rank sum exact

test

data: mB and mA

W = 15, p-value = 0.04149

alternative hypothesis: true

location shift is less

than 0

which leads to, �

(8,8) = 51 and,�

(8,8) =
16×17

2 − 51 = 85.

Moreover,

*�<�

(8,8) =
8∑
8=1

8∑
9=1

1�8<� 9

= 5 + 5 + 5 + 6 + 6 + 7 + 7 + 8 = 49 = ,�

(8,8) −
8 × 9

2
,

and

*�>�

(8,8) =
8∑
8=1

8∑
9=1

1�8>�9

= 3 + 3 + 3 + 2 + 2 + 1 + 1 + 0 = 15 = , �

(8,8) −
8 × 9

2
.

An effective way of displaying the data is to use a table as shown
in Table 3.2. For example, it is easy to read the rank of the different
values, and in the last column that N=16.

Table 3.2: Effective presentation of data in tabular form.

�(.) 3.1 3.3 4.2 4.5 4.7 4.9 5.8 6.8

�(.) 1.5 2.1 2.3 2.5 2.8 4.4 4.8 6.6

'8 6 7 8 10 11 13 14 16

' 9 1 2 3 4 5 9 12 15

Remark 3.5 (Sample size) The theoretical guarantees available for
the Kolmogorov-Smirnov test are asymptotic. Therefore, this test is a
priori valid only for "large" sample sizes. Here, we have guarantees
even for very small sample sizes. Thus, in the case of small sample
sizes, a Wilcoxon-Mann-Whitney test is preferred.

And in the case of a very large sample size? The central limit theorem
ensures that the samples are then essentially Gaussian, and we can use
the Student’s t-test with a controlled margin of error.

3.3.2.3 Treatment of Ex-Aequos

We have assumed that the laws are continuous, so the probability of
having a tie is zero. In practice, either because the laws are not continuous,
or because we have rounded measures, we can have ex-aequos. In this
case, we can “modify” the Mann-Whitney test statistics as follows:

*̃-<.

(=,<) =
=∑
8=1

<∑
9=1

{
1-8<.9 +

1
2
1-8=.9

}
and

*̃->.

(=,<) =
=∑
8=1

<∑
9=1

{
1-8>.9 +

1
2
1-8=.9

}
.
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Note that *̃-<.

(=,<)+ *̃
->.

(=,<) = =<.

For the Wilcoxon test, we use the mean ranks. It consists in assigning to
all the elements of a group of ex-aequos the average rank of the elements
of the group. We thus correct the ' 9 defined previously.

Example 3.6 We consider the following observed values for the two
samples

G = (5, 3, 6, 8, 1, 6) and H = (5, 7, 9, 5, 2) .

In particular = = 5, < = 6, and we obtain the following table of
ordered values and ranks:

G(.) 1 3 5 6 6 8

H(.) 2 5 5 7 9

'̃8 1 3 5 7.5 7.5 10

'̃ 9 2 5 5 9 11

Therefore,

*̃-<.

(=,<) = 1 +
(
2 + 1

2

)
+

(
2 + 1

2

)
+ 5 + 6 = 17 ,

,̃.

(=,<) =
<∑
9=1

'̃ 9 = 2 + 5 + 5 + 9 + 11 = 32 ,

and we still check that *̃-<.

(=,<) = ,̃
.

(=,<) −
5×6

2 .

If any of the variables are tied, R gives awarningmessage saying ?-values
are not exact. Overlaps within variables are not too "critical" from a
statistical point of view. However, ties -8 = .9 for some 8 and 9 are a
more severe problem as the value of the statistic becomes uncertain: it
can be affected by arbitrarily small changes in -8 or .9 .

3.3.3 Median test

We want to testℋ0: “� = �” againstℋ+1 : “� > �”, and we assume that
� and � are continuous. The principle of the median test is to determine
the number of variables in the second sample that are greater than the
median of all observations. We note # = = + <.

Definition 3.9 (Median test) Themedian test is defined from the statistic

"(=,<) =
1
<

<∑
9=1

1' 9> #+1
2
.

The rejection region at level  is of the form ℛ =
{
"(=,<) > <=,<,1−

}
.
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Example 3.7 (Location test) Let -1 , . . . , -= i.i.d. of distribution func-
tion � and .1 , . . . , .< i.i.d. according to the distribution function
� = �(· − �). For example, we study the blood pressure of patients
undergoing treatment for hypertension (.9), and compare them with
untreated patients (-8). Suppose that after treatment, the blood pres-
sure law is translated by �. The treatment is effective if � < 0, it is
ineffective if � = 0.

Distribution of "(=,<) underℋ0:

I If # is even, then

∀: ∈
s

max
(
0, < − #

2

)
, min

(
<,

#

2

) {
,

Pℋ0

(
<"(=,<)= :

)
=

(#
<

) (#−<
#/2−:

)( #
#/2

) .

Hence,"(=,<) follows a hypergeometric distribution of parame-
ter (#, #/2, <). We deduce that

Eℋ0

[
"(=,<)

]
=

1
2

and V0A
(
"(=,<)

)
=

=

4<(# − 1) .

I If # is odd, then

∀: ∈
s

max
(
0, < − # + 1

2

)
, min

(
<,

# − 1
2

) {
,

Pℋ0

(
<"(=,<)= :

)
=

(#
<

) ( #−<
(# − 1)/2−:

)( #
(# − 1)/2

) .

Hence,"(=,<) follows a hypergeometric distribution of parame-
ter

(
#, #−1

2 , <
)
. We deduce that

Eℋ0

[
"(=,<)

]
=
# − 1
2#

and V0A
(
"(=,<)

)
=
=(# + 1)

4<#2 .

The knowledge of the distribution of "(=,<) under ℋ0 allows to
determine the rejection zone of the test. For =, < > 30, we can
approximate the distribution of "(=,<) underℋ0 by the distribution


(
Eℋ0

[
"(=,<)

]
,V0A

(
"(=,<)

) )
. We can then use a Fisher test (cf.

Part II) or a "2 test (Chapter 4).

For an example using a chi-square test, see Subsection 4.5.1.

Remark 3.6 The Wilcoxon, Mann-Whitney, and median tests do not
test two-sided alternatives.

3.4 Normality Tests

Normality tests are used to determine if a data set is well-modeled by a
normal distribution (within some tolerance). These tests are all the more
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Listing 3.3: Different data sets.

> n=200

> data1=rnorm(n,2,1)

> data2=runif(n,min=2,max=4)

> data3=rcauchy(n)

5: Or “doite de Henry” in French.

6: In other words, Φ−1 is the standard
normal quantile function.

important as many statistical tests, such as the Student’s t-test or ANOVA
(cf. Part II), require a normally distributed sample population.

In this section, we consider a random variable - with cumulative
distribution function � and a =-sample (-1 , . . . , -=) of the same distri-
bution. We note �̂= the empirical distribution function associated to this
sample.

To illustrate the different methods, we will consider the following three
data sets of size = = 200:

I data1: simulated from the Gaussian distribution(2, 1),
I data2: simulated from the uniform distributionU([2, 4]),
I data3: simulated from the Cauchy distribution C(0, 1).

3.4.1 Normal Probability Plot

The method, also called quantile-quantile plot (Q-Q plot),5 consists of
plotting the graph of points

(
Φ−1 ◦ �̂=(G(8)), G(8)

)
, where:

I G(1) 6 . . . 6 G(=) is an ordered realization of the sample (-8)8∈J1,=K,
I Φ represents the cumulative distribution function of the standard

Gaussian law(0, 1),6
I and �̂= is the empirical distribution function associated to the

sample (-8)8∈J1,=K.

Figure 3.7 shows the Q-Q plot for the three data sets introduced before-
hand.

Figure 3.7: Q-Q plot for the 3 data sets: In
order,(2, 1),U([2, 4]) and C(0, 1).

3.4.1.1 Principle

Let - ∼ (Ḡ , �2) be a Gaussian variable of mean Ḡ and variance �2.
If # ∼(0, 1) is a centered normal distribution variable, we have the
following equations:

∀G ∈ R, P(- < G) = P
(
- − Ḡ
�

<
G − Ḡ
�

)
= P(# < C) ,

where C = G−Ḡ
� .

Hence, for each observation G8 of a variable -, we can compute the
probability P(- < G8) and, using a table of the Φ function, derive C8 such



38 Ch. 3 Tests Based on the Empirical Distribution Function

that )(C8) = P(- < G8). Then, if the variable - is Gaussian, the points of
coordinates (G8 , C8) are practically aligned on the line of equation C = G−Ḡ

� .
We can then easily conclude about the normality of a variable but also
read its mean and standard deviation in the equation of the line.

In practice, the first step is usually to standardize our observations, i. e.
to subtract their mean and renormalize them by their standard deviation
(statistical software such as R or Python do it automatically).

Now we have to focus on the ends of the curve formed from the points.
Suppose that the points at the ends of the curve do not fall on a straight
line but are instead very far apart. In this case, we reject with certainty
the hypothesis of Gaussianity; in other words, our observations are not
normally distributed. On the contrary, if all the points plotted on the
graph are perfectly aligned, the assumption of Gaussianity is reasonable.
Without being able to assert it completely (it is a purely graphical tool), it
is reasonable to assume that our observations are normally distributed.

3.4.1.2 Skewed and Tailed Q-Q Plots

Let standardized observations. Q-Q plots are also used to determine
distributions’ skewness (a measure of “asymmetry”).

I If the bottom end of the Q-Q plot deviates from the straight line,
but the upper end does not, then we can clearly state that the
distribution has a heavier tail to its left, is skewed to the left, or is
negatively skewed.

I On the other hand, if the upper end of the Q-Q graph deviates
from the straight line but the lower end does not, then we can say
that the observed distribution has a heavier tail on its right, or in
other words, that it is skewed to the right, or positively skewed.

Figure 3.8: Influence of skewness/asym-
metry on Q-Q plots

Similarly, we can talk about distributions’ kurtosis (a measure of the
“tailedness”) by simply looking at their Q-Q plot. In the case of a thick-
tailed distribution, both ends of the Q-Q plot deviate from the straight
line while its center follows the line. In contrast, a thin-tailed distribution
forms a Q-Q plot with very little or negligible deviation at the ends,
which actually makes it a good fit for the normal distribution.

Figure 3.9: Influence of kurtosis/tailed-
ness on Q-Q plots
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Listing 3.4: Kolmogorov-Smirnov test on
the three simulated samples.

> library(nortest)

> lillie.test(data1)

Lilliefors (Kolmogorov-

Smirnov) normality test

data: data1

D = 0.043152, p-value =

0.4835

> lillie.test(data2)

Lilliefors (Kolmogorov-

Smirnov) normality test

data: data2

D = 0.087607, p-value =

0.00076

> lillie.test(data3)

Lilliefors (Kolmogorov-

Smirnov) normality test

data: data3

D = 0.35484, p-value < 2.2e

-16

Remark 3.7 HereweusedQ-Qplots to check thefit of our observations
to the normal distribution. We can also use such diagrams to evaluate
the relevance of the fit of a given distribution to any theoretical model
and, more generally, to compare two distributions that we consider
similar.

To do this, we compare the position of certain quantiles in the observed
population with that in the theoretical population. In the case of a
good modeling hypothesis, the points thus generated should be roughly
aligned with the first bisector.

3.4.2 Kolmogorov–Smirnov Test – Lilliefors Test

We want to test the null hypothesis

ℋ0: “- follows a normal distribution”,

against the alternative hypothesis

ℋ1: “- does not follow a normal distribution”.

The Lilliefors test is a normality test adapted from the Kolmogorov-
Smirnov test to test the normality of a sample when the parameters of
the assumed normal distribution are unknown, i. e. when neither the
expectation � nor the standard deviation � are known.

We note

-̄ =
1
=

=∑
8=1

-8 and (2
- =

1
= − 1

=∑
8=1
(-8 − -̄)2 ,

the empirical mean and the empirical variance of - respectively.

Definition 3.10 (Kolmogorov–Smirnov test) The Kolmogorov normal-
ity test is based on the test statistic

�= = sup
G∈R

��� �̂=(G) −Φ (
G; -̄ , (2

-

) ��� ,
where Φ

(
G; -̄ , (2

-

)
is the cumulative distribution function of the normal

distribution
(
-̄ , (2

-

)
.

The reject region at level  is of the form ℛ = {�= > 3=,1−}

Proposition 3.16 Under asummptionℋ0, i. e. - follows a normal distribu-
tion(�, �2),

1. The distribution of �= does not depend on the unknown parameters �
and �;

2. The law of �= is then given by:

�= = sup
G∈R

���� Φ̂=(G) −Φ (
G − /̄
(/

) ���� ,
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where :

I / = (/1 , . . . , /=) is i.i.d of law(0, 1),
I Φ̂= the empirical standard distribution function,
I /̄ the empirical mean, and
I (2

/
the empirical variance of /.

The distribution of �= is tabulated (we can for example simulate it with
� = 0 and � = 1 to estimate the quantiles). However, until now, the
tables for this distribution have been computed only by Monte Carlo
methods.

Moreover, since the hypothesised cumulative distribution function has
been moved closer to the data by estimation based on those data, the
maximum discrepancy has been made smaller than it would have been
if the null hypothesis had distinguished only one normal distribution.
Thus, the “null distribution” of the test statistic, i.e., its probability
distribution assuming the null hypothesis, is stochastically smaller than
the classical Kolmogorov-Smirnov distribution. In other words, this test
is not very powerful: a large number of observations is required to reject
the hypothesis of normality.

Remark 3.8 Avariant of the test can be used to test the null hypothesis
that data come from an exponentially distributed population, when
the null hypothesis does not specify which exponential distribution.

3.4.3 Shapiro-Wilk Test

This is a test based on the !-statistic (linear combination of order
statistics), which relies on a comparison of the empirical variance with
an estimator of the variance of - that has good properties under the
normality assumption.

To date, the Shapiro-Wilk test remains themost efficient test for normality
and can handle samples of up to 5000 observations.

3.4.3.1 Estimation of the Mean and Variance using Order Statistics
for Symmetric Laws

Let -1 , . . . , -= i.i.d. Let � = E[-8] and �2 = V0A(-8). Let .8 = (-8 − �)/�.
Assume that .8 is symmetrically distributed, i. e. that −.8 and .8 have the
same distribution. We denote by -(1) 6 . . . 6 -(=) the ordered sample
of -8 and .(1) 6 . . . 6 .(=) that of .8 . In particular,

.(8) =
-(8) − �

�
.

For all 8 , 9 ∈ J1, =K, let 8 = E[.(8)] and �8 , 9 = C>E
(
.(8) , .(9)

)
. We then

have
-(8) = � + 8� + �8 ,
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7: Each expectation 8 depends of =!

with E[�8] = 0. Note that the �8 are not independent: the variance-
covariance matrix of the vector � = C

(
�1 �2 . . . �=

)
is �2�. Let 1= and 

be the vectors of R= defined by

1= =
C
(
1 1 . . . 1

)
and  = C

(
1 2 . . . =

)
.

We denote � the matrix of size (=, 2) defined by � = (1= , ). Finally, we
note -(·) = C

(
-(1) -(2) . . . -(=

)
. We then have the relation

-(·) = �

(
�
�

)
+ � .

The weighted least squares estimator of (�, �) is obtained by minimizing
in the parameters (�, �) the criterion

C

(
-(·) − �

(
�
�

))
�−1

(
-(·) − �

(
�
�

))
.

The solution of this system is(
�̂=
�̂=

)
= ( C��−1�)−1 C��−1-(·) ,

and
C��−1� =

(
C1=�

−11=
C1=�

−1
C�−11=

C�−1

)
.

Lemma 3.17 When the law of.8 is symmetric, C1=�−1 = 0. So, the matrix
C��−1� is diagonal.

As a result,

�̂= =
C1=�

−1-(·)
C1=�−11=

and �̂= =
C�−1-(·)
C�−1

.

It can be shown that, if the law of .8 is not symmetric, then �̂= underesti-
mates �.

3.4.3.2 Test Procedure

Let / = (/1 , . . . , /=) be an i.i.d. sample of distribution (0, 1) and
/(1) 6 . . . 6 /(=) its ordered counterpart. Let  be the mean vector of the
ordered statistics /(·), i. e. 8 = E[/(8)],7 and � be the covariance matrix
of the ordered statistics /(·), i. e. �8 , 9 = E

[ (
/(8) − 8

) (
/(9) −  9

) ]
.

Proposition 3.18 (Order statistics) Let a sample (-1 , -2 , . . . -=) dis-
tributed with probability density function 5 and cumulative distribution �,
then the probability density of the :-th order statistic is given by

5-(:)(G) =
=!

(: − 1)!(= − :)! �(G)
:−1 (1 − �(G))=−: 5 (G) .
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Listing 3.5: Shapiro-Wilk test on the three
simulated samples.

> shapiro.test(data1)

Shapiro-Wilk normality

test

data: data1

W = 0.99521, p-value = 0.7804

> shapiro.test(data2)

Shapiro-Wilk normality

test

data: data2

W = 0.95623, p-value = 7.897e

-06

> shapiro.test(data3)

Shapiro-Wilk normality

test

data: data3

W = 0.33683, p-value < 2.2e

-16

Moreover, the joint probability density of the = order statistics is

5
(
G(1) , G(2) , . . . , G(=)

)
= =!

( =∏
8=1

5
(
G(8)

) )
1G(1)<G(2)<...<G(=−1)<G(=) .

The idea of the Shapiro-Wilk test is to consider the correlation of(
-(1) , . . . , -(=)

)
with (1 , . . . , =), in other words, to ask whether the

order statistics of (-1 , . . . , -=) arewell correlatedwith expected standard
normal order statistics. A correlation close to 1 would suggest a good
fit to normality, whereas a correlation much less than 1 would suggest
non-normality.

Definition 3.11 (Shapiro-Wilk test) The Shapiro-Wilk test for testing
the normality assumption of -8 is based on the test statistic

,= =
�̂=

(
C�−1

)2∑=
8=1(G8 − -̄)2

(
C�−2

) .
It can be written as

,= =

( ∑=
8=1 8-(8)

)2∑=
8=1(G8 − -̄)2

,

where
(1 , . . . , =) =

C�−1(
C�−2

) 1/2

is a unit row vector.

The rejection region is of the form ℛ = {,= 6 2=,}.

The 08 are tabulated, which makes it easy to calculate,= ; the quantiles
2=,1− are also tabulated.

3.5 Very Important Remark: Interpretation of
Non-Parametric Tests

Thehypotheses of a test can be considered as parts of the set of probability
measures on a certain space. In our case,ℋ0 represents a singleton and
ℋ1 its complement. The non-parametric tests give real information only
if the hypothesisℋ0 is rejected. Indeed, as soon as the distribution ? of
the sample is close to ?0, even if it is inℋ1, we will acceptℋ0. This is
all the more true when one is obliged to group classes together because
the sample is too small or to create classes for continuous laws: many
laws then provide the same probability vectors on the finite set. We use
a non-parametric test to invalidate a model. Ifℋ0 is rejected, then the
model must be modified. If not, then the model (although simplistic,
approximate... and probably wrong) is satisfactory.



Figure 4.1: The chi-squared distribution.
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The family of chi-squared tests, also written as "2 tests, gathers tests
with various objectives: adjustment, independence, homogeneity, etc.
Although, they all have in common that they measure the deviation
from the null hypothesis via a “chi-squared divergence”, and they are all
associated with an asymptotically chi-squared distributed test statistic.
The underlying idea is to compare observed numbers or frequencies in
a sample with theoretical frequencies derived from statistical/modeling
assumptions. Chi-squared tests are valid for the study of qualitative (or
discrete) data with finite support. However, in practice, these tests are
also applied to discrete data with infinite support or to continuous data
after grouping into classes.

4.1 Reminders on the "2 Distribution

Definition 4.1 We consider = independent variables of a reduced centered
normal distribution: /1 , . . . , /= ∼ (0, 1). The quantity ∑=

8=1 /
2
8
is a

random variable whose distribution is that of a "2 with = degrees of freedom

Let "2
= be a chi-squared distribution of degree of freedom =. We then

have:

I Expectation: E
[
"2
=

]
= =,

I Variance:V0A
(
"2
=

)
= 2=.

The degree of freedom = is the number of linearly independent observa-
tions appearing in the sum of squares.

The variable "2 is tabulated according to its degree of freedom =. An
example of the chi-squared distribution is given in Figure 4.1.

Proposition 4.1 Let =, < ∈ N. We have the relation "2
= + "2

< = "2
=+< .

Proof. Direct application of the addition theorem for independent random
variables.

4.2 Chi-Squared Goodness of Fit Test

The chi-squared goodness of fit test is a statistical hypothesis test used
to determine whether a variable is likely to come from a specified
distribution or not. It is often used to evaluate whether sample data is
representative of the full population.
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1: or  distinct values, or with values in
 classes. . .

2: In other words, its unbiased empirical
statistic.

Let- be a discrete qualitative or quantitative randomvariablewith > 1
modalities {01 , . . . , 0 }1 , of unknown distribution � = (�1 , . . . ,� ),
where

∀: ∈ J1,  K, �: = P(- = 0:) > 0 .

Let -1 , . . . , -= i.i.d distributed according to the same law as -.

Let the probability law ?0 = (?0
1 , . . . , ?

0
 
) on {01 , . . . , 0 } known and such

that for all :, ?0
:
∈ ]0, 1[. The problem we aim to solve is the following:

given this law ?0, how to know if - is ?0-distributed, from the =-sample
-1 , . . . , -=? In other words, we want to test:

ℋ0 : “∀: ∈ J1,  K, �: = ?0
:
” versus ℋ1 : “∃: ∈ J1,  K, �: ≠ ?0

:
” .

A natural idea is to estimate the probability distribution of - using the =-
sample (-1 , . . . , -=) and to compare this estimator with the distribution
?0. We therefore denote #: =

∑=
8=1 1-8=0: the number of times we get

the value 0: in the sample and estimate �: by �̂: =
#:

= .2 We seek to
establish whether the difference between the observed and theoretical
values is significant or only due to random variation. To this end, we
consider the statistic

)= = =
 ∑
:=1

(
�̂: − ?0

:

)2

?0
:

=

=∑
:=1

(#: − = ?0
:
)2

= ?0
:

.

A naive idea would have been to consider the difference ∑ 
:=1

(
�̂: − ?0

:

)
.

But, in this case, the statistic is always zero:

 ∑
:=1

(
�̂: − ?0

:

)
=

 ∑
:=1

�̂: −
 ∑
:=1

?0
:
= 1 − 1 = 0 .

Hence the presence of the square to overcome this issue. Finally, to avoid
giving too much weight to small values of #: , we consider a relative
error. This statistic is called the chi-squared divergence between the �
and ?0 distributions. It measures the “distance” between the observed
and theoretical proportions under ℋ0. Note that it is not a distance
because it does not check the symmetry property.

Link with the multinomial distribution.

Proposition 4.2 The random variable # = (#1 , . . . , # ) follows a multi-
nomial distribution ℳ(=,�) on N , i. e. for all (=1 , . . . , = ) ∈ N we
have

P(#1 = =1 , . . . , # = = ) =


=!
=1! . . . = !

�=1
1 . . .�= 

 
if

 ∑
:=1

= 9 = =

0 else.

Thus, we can reformulate the test by:

ℋ0 : “# ∼ ℳ(=, ?0) ” versus ℋ1 : “# /ℳ(=, ?0) ” .
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Proposition 4.3 Let
√
� =

(√
�1 , . . . ,

√
� 

)
. Then,

.= =

(
#1 − =�1√

=�1
, . . . ,

# − =� √
=� 

)
ℒ−→

=→+∞
(0, Γ) ,

where Γ = � − C
√
�
√
� is the orthogonal projection matrix onV42C(

√
�)⊥

Exercise 4.4 Prove Proposition 4.3. To this end, you may introduce the
variables (8 = (1-8=01 , . . . , 1-8=0 ) and note that they are i.i.d according to
a multinomial distribution of parameters (1,�).

Theorem 4.5 Assume that -1 , . . . , -= are i.i.d. distributed according to
� = (�1 , . . . ,� ). Then,

/= =
 ∑
:=1

(#: − =�:)2
=�:

ℒ−→
=→+∞

"2( − 1) .

Proof. This theorem is a consequence of the previous proposition and of
Cochran’s theorem.

We are now able to define the test procedure.

The Pearson’s chi-squared test.

Using the previous results, we get the asymptotic behavior of )= :

)= = =
 ∑
:=1

(#:

= − ?0
:

)2

?0
:


ℒ−→

=→+∞
"2( − 1) ifℋ0 is true,

0.B.−→
=→+∞

+∞ else.

Thus, at a fixed  level, the Pearson’s goodness-of-fit test consists of
rejecting the null hypothesis � = ?0 if:

)= =
 ∑
:=1

(#: − =?0
:
)2

=?0
:

> G −1,1− ,

where G −1,1− is the 1− 0 quantile of a "2 with  −1 degrees of freedom.
According to the previous result, this test is of asymptotic level .

According to the law of large numbers,

)=

=
>

#= − ?0
2

0.B.−→
=→+∞

� − ?02
.
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Listing 4.1: Mendel’s example.

> Nk=c(315,101,108,32)

> ptheo = c(9,3,3,1)/16

> chisq.test(Nk,p=ptheo)

Chi-squared test for given

probabilities

data: Nk

X-squared = 0.47002, df = 3,

p-value = 0.9254

> n = sum(Nk)

> sum(((Nk-(n*ptheo))^2)/(n*
ptheo))

[1] 0.470024

> qchisq(0.95,3)

[1] 7.814728

Hence lim=→∞ )= = +∞ a.s, and the power of the test tends to 1 when =
becomes infinite.

The chi-squared test is based on asymptotic results (a convergence in law
underℋ0 and an almost sure convergence underℋ1). However, we only
ever have a finite number of observations. Therefore, the challenge is to
know to what extent one can act as if this limit is equality. In practice,
the literature recommends the following recipe: for the test to be valid,
=?0

:
must be greater or equal to 5 for all :. When this is not the case,

the classes are grouped until these conditions are verified. However,
be careful: the rejection region changes when we group the modalities
because the limit law depends on the number of modalities.

The "2 test can also be used to test the fit of a law on N, R or even R3. To
do this, it is sufficient to divide the space into a finite number of classes.
For a law on N, we use for example the following division:

N = {0} ∩ . . . ∩ {:} ∩ {; > : + 1} .

Example 4.1 (Mendel’s example.) The color trait in peas is encoded
by a gene with two allelic forms Y and g corresponding to the colors
yellow and green. Yellow is dominant and green recessive. The shape
character, round or wrinkled, is carried by another gene with two
allelesR (dominant) andw (recessive).We cross 2populations (pure) of
peas: one yellow and round, the other green and wrinkled. According
to Mendel’s prediction, after 2 crosses, the proportion of peas

I YR: yellow and round is 9/16,
I Yw: yellow and wrinkled is 3/16,
I gR: green and round is 3/16,
I gw: green and wrinkled is 1/16.

In his experiments, Mendel obtained the following results #.' = 315,
#.F = 101, #6' = 108, #6F = 32. Here,  = 4 and we obtain that
)= = 0.47 and G3,0.95 = 7.82 (See Listing 4.1). Mendel’s hypothesis is
therefore widely accepted.

4.3 Chi-Squared Goodness of Fit Test to a
Family of Laws

Let Θ be an open of R3, where 3 ∈ J1,  K. Let a family of probability
laws

(
ℒ(�)

)
�∈Θ indexed by a parameter �, and defined on a finite set

{01 , . . . , 0 }. Let assume that the maximum likelihood estimator of � is
available.

We want to test if the law of - belongs to the family
(
ℒ(�)

)
�, i. e.:

ℋ0 : “∃� ∈ Θ, - ∼ ℒ(�) ” versus ℋ1 : “∀� ∈ Θ, - / ℒ(�) ” .
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3: which is difficult to prove because it
involves the properties ofmaximum likeli-
hood estimators, in particular their strong
consistency in most cases: namely �̂= con-
verges a.s. towards �, and

√
=
(
�̂= − �

)
converges in law towards a Gaussian dis-
tribution.

The laws
(
ℒ(�)

)
�∈Θ are characterized by the probability vectors

P(�) =
{
?(�) =

(
?1(�), . . . , ? (�)

)
; � ∈ Θ

}
on {01 , . . . , 0 }. Thus, still denoting � the law of -, we want to test

ℋ0 : “� ∈ P ” versus ℋ1 : “� ∉ P ” .

The idea here is to replace ?0 in the )= statistic defined in the previ-
ous section with the distribution of P(Θ) that is “closest” to � given
the data. To this end, we will replace ?0 with ?(�̂=), where �̂= is the
maximum likelihood estimator of the parameter � based on the sample
(-1 , . . . , -=), under ℋ0. All put together, we therefore consider the
following statistic:

)̂= =
 ∑
:=1

(
�̂: − ?:(�̂=)

)2

?:(�̂=)
=

 ∑
:=1

(
#: − =?:(�̂=)

)2

=?:(�̂=)
.

Let us apply the following (admitted3 ) result:

Theorem 4.6 Assume that:

I For any : ∈ J1,  K, � ↦→ ?:(�) is of class �2 on Θ and such that for
any � ∈ Θ, ?:(�) ≠ 0 ;

I For any � ∈ Θ, the vectors E8 = C
(
%8?1(�), . . . , %8? (�)

)
, where

8 ∈ J1, 3K, form a linearly independent family of R ;
I For any � ∈ Θ, if the -1 , . . . , -= are i.i.d. of distribution ?(�) then

the maximum likelihood estimator �̂= is consistent towards � .

Under these conditions, if -1 , . . . , -= are i.i.d. of law ?(�) then

)̂=
ℒ−→

=→+∞
"2( − 3 − 1) .

In particular, the asymptotic behavior of )̂= is given by

)̂= = =
 ∑
:=1

(#:

= − ?:(�̂=)
)2

?:(�̂=)


ℒ−→

=→+∞
"2( − 3 − 1) ifℋ0 is true,

0.B.−→
=→+∞

+∞ else.

We then construct the "2 test of goodness of fit to the family P(Θ) as
follows: We reject the hypothesis if

)̂= =
 ∑
:=1

(
#: − =?:(�̂=)

)2

=?:(�̂=)
> G −3−1,1− ,

where G −3−1,1− is the 1 − 0 quantile of a "2 with  − 3 − 1 degrees of
freedom.

The ?-value is

?
(
)̂ obs
=

)
= Pℋ0

(
)̂= > )̂

obs
=

)
−→
=→∞

P
(
"2( − 3 − 1) > )̂ obs

=

)
.
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Table 4.1: Boys in siblings.Number of boys
in a sibling of 4 children.

Boys (:) Class size (#:)

0 572
1 2329
2 3758
3 2632
4 709

Listing 4.2: Boys in siblings.

> classes = c(0,1,2,3,4)

> Nk = c

(572,2329,3758,2632,709)

> n = sum(Nk)

> pihat = Nk/n

> thetahat = sum(Nk*classes) /

(n*4)

> ptheo = dbinom(0:4,4,

thetahat)

> Tobs = sum( ((Nk-(n*ptheo))

^2) / (n*ptheo) )

> print(Tobs)

[1] 0.9882779

> val = chisq.test(Nk,p=ptheo)

# Beware of degrees of freedom

> print(val)

Chi-squared test for given

probabilities

data: Nk

X-squared = 0.98828, df = 4,

p-value = 0.9116

> pval = 1-pchisq(val$

statistic, 3)

> print(pval)

X-squared

0.8040883

Under the alternative assumption:

)̂=

=
> 32

(
#

=
,P(Θ)

)
0.B.−→ 32 (�,P(Θ)) ,

and therefore the power tends towards 1 as soon as 32 (�,P(Θ)) > 0.

Remark 4.1 (Degrees of freedom) In Theorem 4.6, the degree of the
limit law is smaller the more we test the fit to a large family. Moreover,
this degree of freedom is bounded by : − 1. Intuitively, this makes
sense because we no longer compare the empirical frequencies to a
fixed law but to the most probable law in a parameterized family,
given the observations. We say that )̂= is stochastically smaller than
)= .

Example 4.2 For 10000 siblings of (exactly) 4 children, the number of
boys composing these siblings is reported in Table 4.1

We decide to model the births by assuming that they are independent
and that the probability of having a boy is equal to � ∈ ]0, 1[. We note
-8 the number of boys in the 8-th sibling. We therefore want to test

ℋ0 : “ ∃�, -8 ∼ ℬ8=(4, �) ” vs. ℋ1 : “ ∀�, -8 / ℬ8=(4, �) ”.

Under ℋ0, the maximum likelihood estimator for � is given by
�̂= = 1

4-= . We can therefore compute ?(�̂=) =
(
?0(�̂=), . . . , ?4(�̂=)

)
with ?:(�̂=) = P(* = :) for* ∼ ℬ8=(4, �) . Moreover, still underℋ0,
the test statistic is

)̂= =
4∑
:=0

(
#: − =?:(�̂=)

)2

=?:(�̂=)
ℒ−→

=→+∞
"2(5 − 1 − 1) = "2(3) .

Exercise 4.7 We study the number of connections to Google during the unit
time of one second. We make 200 measurements, reported in Table 4.2. Let
- be the N-valued random variable counting the number of connections per
second. Can it be considered as a Poisson distribution at the 5% level?
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Table 4.2: Internet traffic.Number of con-
nections to Google per second.

Connections Class size

0 6
1 15
2 40
3 42
4 37
5 30
6 10
7 9
8 5
9 3
10 2
11 1

4.4 Chi-Squared Test of Independence

Let - and . be two random variables with a finite number of states,
{01 , . . . , 0 } and {11 , . . . , 1!} respectively. Let = pairs of random vari-
ables (-1 , .1), . . . , (-= , .=) be independent and of the same law than
(-,.).

We want to test the independence of the variables - and .. To do this,
we pose:

ℋ0 : “- ⊥⊥ . ” versus ℋ1 : “- 6⊥⊥ . ” .

We start by giving an idea of the construction of the test statistic. First,
we recall that the joint probabilities

∀: ∈ J1,  K , ∀ℓ ∈ J1, !K, P(-= 0: , .=1ℓ )

characterize the law of the couple (-,.). Underℋ0,

∀(:, ℓ ) ∈ J1,  K × J1, !K , P(-= 0: , .=1ℓ ) = P(-= 0:) × P(.=1ℓ ) .

On the other hand, underℋ1,

∃(:, ℓ ) ∈ J1,  K × J1, !K , P(-= 0: , .=1ℓ ) ≠ P(-= 0:) × P(.=1ℓ ) .

We introduce the following random variables:

I #:,ℓ =

=∑
8=1

1-8=0: , .8=1ℓ ;

I #:,· =
=∑
8=1

1-8=0: =
!∑
ℓ=1

#:,ℓ ;

I #·,ℓ =
=∑
8=1

1.8=1ℓ =
 ∑
:=1

#:,ℓ .

Hence, we can estimate P(-= 0: , .=1ℓ ) by #:,ℓ

= and P(-= 0:)×P(.=1ℓ )
by #:, ·# ·,ℓ

=2 . Using the same reasoning as in the previous sections, we
obtain the following test statistic:

�= = =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ

= −
#:, ·# ·,ℓ

=2

)2

#:, ·# ·,ℓ
=2

=

 ∑
:=1

!∑
ℓ=1

(
#:,ℓ − #:, ·# ·,ℓ

=

)2

#:, ·# ·,ℓ
=

.

Theorem 4.8We assume that for all : and all ℓ , P(- = 0:) > 0 and
P(. = 1ℓ ) > 0. Then, underℋ0,

�=
ℒ−→

=→+∞
"2 (( − 1)(! − 1)

)
.

This result can be seen as a corollary of Theorem 4.8. Indeed, we test
the adequacy of the couple’s distribution to the parametric family of
product laws on J1,  K × J1, !K, by estimating the parameters through a
maximum likelihood.
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Table 4.3: Voting age. For or against lower-
ing the voting age to 16, based on educa-
tion level.

Educ. Pros Against #:

Brevet 10 15 25
Bac 20 85 105

Bac+2 20 100 120

#·,ℓ 50 200 250

Listing 4.3: Voting age.

> contingence = matrix(

c(10,20,20,15,85,100),

ncol=2)

> chisq.test(contingence)

Pearsons Chi-squared test

data: contingence

X-squared = 7.1429, df = 2, p

-value = 0.02812

Table 4.4: Eyes vs. Hair. Colors of the eyes
and hair of 124 individuals.

Hair
Eyes Blue Gray Brown

Blonds 25 13 7
Brown 9 17 13
Red 7 7 5
Black 3 10 8

4: In particular, the samples are not nec-
essarily all of the same size.

Remark 4.2 To quickly find the number of degrees of freedom, note
that the number of modes of the couple (-,.) is  !.Moreover, under
ℋ0 (independence of the variables), to know the distribution of (-,.),
it is sufficient to estimate the first  − 1 modalities of -, that is to say
P(- = 0:) for : ∈ J1,  − 1K, and the same for .. Thus the number
of degrees of freedom is given by : ( ! − 1) − [( − 1) + (! − 1)] =
( − 1)(! − 1).

Everything put together, the asymptotic behavior of �= is given by

�= = =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ

= −
#:, ·# ·,ℓ

=2

)2

#:, ·# ·,ℓ
=2


ℒ−→

=→+∞
"2 (( − 1)(! − 1)

)
ifℋ0 is true,

0.B.−→
=→+∞

+∞ else.

Proposition 4.9 Let  ∈ ]0, 1[. The test of rejection region

ℛ =
{
�= > G( −1)(!−1),1−

}
is a test of asymptotic level  to testℋ0 againstℋ1.

Example 4.3 A survey was conducted with a sample of 250 French
people about lowering the voting age to 16. In Table 4.3, the responses
are ranked according to the respondents’ level of education.

Can we say, with a 5% risk of error, that there is a relationship between
a person’s opinion on this issue and their level of education?

Exercise 4.10 Table 4.4 shows the eye and hair colors of 124 individuals. Are
the two criteria independent at the 5% level?

4.5 Homogeneity Test

Chi-squared tests can also test the homogeneity of multiple samples.

We study a character that can take  values {01 , . . . , 0:}. We observe
! > 1 independent samples �1 , . . . , �!. Last, we denote �ℓ the discrete
distribution of the sample �ℓ = (-ℓ ,1 , . . . , -ℓ ,=ℓ ) of size =ℓ .4

Wewant to test if the ! distinct samples come from the same distribution
or not, i. e.:

ℋ0 : “�1 = . . . = �! ” versus ℋ1 : “∃9 ≠ ℓ , � 9 ≠ �ℓ ” .
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Table 4.5: Sports club attendance rate. Ob-
served attendance for each of the two
schools � and �.

Attend. � � #:,·
Yes 12 26 38
No 38 34 72

#·,ℓ 50 60 110

Table 4.6: Sports club attendance rate. The-
oretical attendance for each of the two
schools � and �.

Attend. School � School �

Yes 17.27 20.73
No 32.73 39.27

We know the number of times #:,ℓ =
∑=ℓ
8=1 1-ℓ ,8=0: that the value 0: is

observed in the sample �ℓ . The practical implementation of the test is
the same as for the independence test. We define:

#:,· =
!∑
ℓ=1

#:,ℓ and #·,ℓ =
 ∑
:=1

#:,ℓ = =ℓ .

We then consider the test statistic

�= = =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ

= −
#:, ·# ·,ℓ

=2

)2

#:, ·# ·,ℓ
=2

=

 ∑
:=1

!∑
ℓ=1

(
#:,ℓ − #:, ·# ·,ℓ

=

)2

#:, ·# ·,ℓ
=

,

where = = ∑ 
:=1

∑!
ℓ=1 #:,ℓ .

Theorem 4.11We assume that for all : and all ℓ , �ℓ ,: = P(-ℓ ,8= 0:) > 0.
Then, underℋ0,

�=
ℒ−→

=→+∞
"2 (( − 1)(! − 1)

)
.

As previously, the asymptotic behavior of �= is given by

�= = =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ

= −
#:, ·# ·,ℓ

=2

)2

#:, ·# ·,ℓ
=2


ℒ−→

=→+∞
"2 (( − 1)(! − 1)

)
ifℋ0 is true,

0.B.−→
=→+∞

+∞ else.

Proposition 4.12 Let  ∈ ]0, 1[. The test of rejection region

ℛ =
{
�= > G( −1)(!−1),1−

}
is a test of asymptotic level  to testℋ0 againstℋ1.

Example 4.4 In this example, we want to know if the participation
rate in a sports club of students from two secondary school � and
� is identical or not. We have two samples �1 = (-1,1 , . . . , -11,=1)
and �2 = (-2,1 , . . . , -2,=2), where -ℓ ,8 is the participation of the 8-th
student of school ℓ . In other words: -ℓ ,8 ∈ {01 , 02} = {“yes”, “no”}.
We want to test:

ℋ0 “ The two pop. are homogeneous (same participation rate) ”

against

ℋ1 “ The two populations are not homogeneous) ”.

The observed and theoretical sample sizes are given in Table 4.5 and
Table 4.6 respectively. The observed test statistic is therefore

�obs= =
(12 − 17.27)2

17.27
+ . . . + (34 − 39.27)2

39.27
= 4.504 > G1,0.95 = 3.84 .
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Table 4.7: Laundry. Cleanliness of the laun-
dry at the end of the wash depending on
the detergent used.

Detergent
Clothes VD SD C

A 30 65 205
B 23 56 121
C 75 125 300

Table 4.8: Number for each level of the
Osgood scale, for each region.

Score Brittany Alsace

1
2 1
3 4 1
4 6 3
5 12 4
6 12 4
7 11 11
8 16 13
9 9 10
10 5 10
11 4 9
12 3 5
13 2 5
14 5 10

Total 90 85

Table 4.9: Observed numbers

Score >Med. 6Med. #:,·
Brit. 28 62 90
Al. 49 36 85

#·,ℓ 77 98 175

Table 4.10: Theoretical numbers

Score >Med. 6Med. #:,·
Brit. 39.6 50.4 90
Al. 37.4 47.6 85

#·,ℓ 77 98 175

Hence, we rejectℋ0: the participation rate in the sports club is different
between the two schools.

Exercise 4.13 We seek to invalidate the commonplace that all detergents are
equal. Three detergents are used: �, � and �. We sort the clothes at the end
of the wash into three categories: very dirty (VD), slightly dirty (SD) and
clean (C). The different results are reported in Table 4.7.
Can we say, at the 5% level, that all detergents are the same?

4.5.1 Back to the Median Test

As we saw in Subsection 3.3.3, the idea of the median test is to test the
hypothesis that two populations have the same median. This is done by
counting the number of observations above the overall average for each
sample. Then, using a chi-square test, we test whether the difference
from the median is significant.

Example 4.5 (Cheese factory) A cheese factory commissioned a survey
of its customers in two regions: Brittany and Alsace. Respondents
give their opinion on a new cheese using fourteen-level Osgood scales
(Table 4.8). Before launching the cheese on the market, the marketing
manager would like to check the consistency between the scores given
by each sample.

The median of the total sample is 8. For each region, we can therefore
split our observations according to this quantile. We obtain Table 4.9
of observed numbers and Table 4.10 of theoretical numbers.

All computations done, we find that the observed chi-square statistic
is 12.493, and that the ?-value is 4.09×10−4: The difference is therefore
significant.

4.5.1.1 Yates Correction

The chi-square statistic is overestimated in the one degree of freedom
situation. For this reason, we usually proceed to a correction of the
median test: in each cell of the table where the theoretical number of
individuals is greater than the observed number, we add 0.5; and, in the
opposite case, we subtract 0.5.

In our example, this would modify the contingency table (Table 4.9) to
retain the values 28.5, 61.5, 48.5, and 36.5. The ?-value computed from
these new numbers is then 7.19 × 10−4. This change does not affect the
conclusion.
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Let . be a random variable valued in R= of which we observe a sample.
Most often, we call this variable the response variable. The objective of
the following chapters is to build a model which explains “as well as
possible” this variable according to explanatory variables observed in the
same sample.

5.1 Regular Linear Model

Definition 5.1 A variable . consisting of = observations .8 is said to follow
a statistical linear model if . can be written in the form

. = -� + � , (5.1)

where:

I - ∈ ℳ=,:R is a known real matrix with = rows and : columns, such
that : < =,

I � ∈ R: is an unknown real vector of size :,
I the random vector � ∈ R= represents the error of the model.

This definition is very general and goes far beyond the regression and
variance analysis framework. The hypothesis : < = means that the
number of observations must be greater than the number of parameters
to be estimated. This is a kind of identifiability assumption.

Definition 5.2 The linear model 5.1 is called regular if the matrix - is
regular, i. e. of rank :. Otherwise, i. e. if - is of rank A < :, we speak of
singular models.

5.1.1 Reminders About the Rank

Proposition 5.1 (Link between Injectivity and Rank) Let - ∈ ℳ=,:R.
The following propositions are equivalent:

I - is a matrix of rank :,
I The application - : R: → R= is injective,
I The matrix C-- is invertible

Thus, if- is regular, then by injectivity of the application-, the equation
-� = 0= has for unique solution � = 0: . In particular, the columns of -
are linearly independent in R= .

In some situations, the considered matrix - cannot be regular. However,
it is sometimes possible to overcome this problem by adding so-called
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Figure 5.1: Counter-example to fundamen-
tal hypothesis (A1): The points are not
aligned along a straight line but along a
parabola.

identifiability constraints on the parameters to be estimated (See Section
8.1). From now on, unless explicitly stated otherwise, the model is
assumed to be regular.

Proposition 5.2 (Hat Matrix) Let - ∈ ℳ=,:R be a regular matrix. Then
the projection matrix on ℐ<(-) is given by %[-] = -(C--)−1 C-.

Proof. Let � := -(C--)−1 C- where - ∈ ℳ=,:R is a regular matrix. For
anyD ∈ R= ,wehaveD = �D+D−�D and�D = -(C--)−1 C-D ∈ ℐ<(-).
Let us show that D − %[-]D ∈ ℐ<(-)⊥. Let E ∈ R: . We have

C(-E)(D − %[-]D) = CE C-(D − -(C--)−1 C-D)
= CE C-D − CE(C--)(C--)−1 C-D = 0 .

Hence the result.

This matrix is called the hat matrix and is most often noted �.

5.1.2 Fundamental Assumptions

In order to be able to work more simply and to go further in the study
of this model, we will now impose some restrictions on the vector �.

Assumption (A1): Errors are centered, i. e. for all 8 ∈ J1, =K, E[�8] = 0.

This assumption is very important and ensures that themodel is correctly
defined, in that no relevant effects have been missed. Indeed, in the
case where E[�] ≠ 0= , it would mean that part of the information was
omitted when modeling E[.]. More precisely, this hypothesis amounts
to assuming that

E[.] = -� =
:∑
9=1

�9G
(9) ,

where G(9) denotes the 9-th column of the matrix -. In other words,
the variables G(9) make it possible to explain . by a cause and effect
relationship. A counter-example is given in Figure 5.1. In this example
it is clear that a curvature has been forgotten and that a better model
would be

∀8 ∈ J1, =K .8 = �1 + �2/8 + �3/
2
8 + �8 .

Moreover, this relationship is linear in nature: on average, . writes as
a linear combination of G(9). The variables G(9) are called explanatory
variables or predictors, and the matrix - the “design matrix”.

Remark 5.1 The linear nature of the relationship between G(9) and .
justifies the term “linear model”.
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Figure 5.2: Counter-example to fundamen-
tal hypothesis (A3): Presence of inertia in
the process: The curve tends to stay above
the line for some time when it crosses it,
and vice versa.

1: We will not deal here with this type of
data, which would require one, or even
several, dedicated chapters.

Assumption (A2): The variance of the errors is constant: For all
8 ∈ J1, =K, V0A(�8) = �2, where �2 is an unknown parameter to be
estimated.

This amounts to imposing on . that, for any 8 ∈ J1, =K,V0A(.8) = �2. In
practice this assumption in one of the most difficult to check. However,
it is often reasonable to assume that we meet (A2). If this is not the case,
we can set up a statistical treatment of the linear model. However, this
requires much more work.

Assumption (A3): The variables �8 are independent.

We will consider that this hypothesis is checked when each observation
(statistical unit) corresponds to an independent sampling or a physical
experiment under independent conditions. This is not always the case.
For example, consider time series:1 some inertia may occur, and the error
of the past can influence the future error. Hence, temporal problems
require particular statistical treatments (ARMA process, for instance).

Hypothesis (H4): The variables �8 are distributed according to Gaus-
sian laws: For all 8 ∈ J1, =K, �8 ∼(0, �2).

This assumption is the least important since we can get by without it
when the number of data is large.

The normality of errors assumption can be justified:

I By a theoretical argument: Errors can be described as measurement
errors. They are an accumulation of small, uncontrollable, and
independent hazards. For example, an animal’s weight measure-
ment may be subject to fluctuations due to measurement errors
during weighing, its state of health, its genetic baggage, or even its
natural propensity to gain more or less weight. According to the
central limit theorem, if all these effects are independent with the
same zero mean and the same “small” variance, their sum tends
towards a Gaussian variable. The Gaussian distribution models all
situations where chance results from several causes independent
of each other. Notably, measurement errors generally follow the
Gaussian distribution quite well.

I By a practical argument: It is easy to check if a random variable
follows a normal distribution. By studying the a posteriori distribu-
tion of the computed residuals (estimated errors) and comparing
it to the theoretical (normal) distribution, one often finds that the
Gaussian assumption is reasonable.

It follows from the hypotheses (A1− 4) the normality of .:

. ∼ =

(
-�, �2�=

)
.
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This last equality could have been chosen as a definition of a linear
model, this is formally correct, but in practice, it is better to distinguish
the four hypotheses. In particular, as we have seen, the hypothesis of
Gaussianity (H4) is less critical, especially for large data sets. In several
cases, we shall consider a non-Gaussian linear model where (H4) is
simply removed or replaced by a weaker form: i.i.d errors with finite
fourth moments, for instance.

In the statistical literature, severalmethods, often graphical, are proposed
to test (A1− 4). We will discuss them in Section 9.7.

5.2 Example: Linear Gaussian Models

5.2.1 The Linear Regression Model

We try to model a quantitative variable . as a function of quantitative
explanatory variables G(1) , . . . , G(?). Under the Gaussian assumption, the
linear regression model is written as

.8 = �0 + �1G
(1)
8
+ . . . + �?G(?)8 + �8 ,

where �0 , �1 , . . . , �? are unknown parameters and the �1 , . . . , �= are
i.i.d of laws(0, �2), where �2 has to be estimated. We can rewrite the
model in the following matrix form:

. = -� + � ,

where � = C(�0 , �1 , . . . , �?) and - = (1= , G(1) , . . . , G(?)) ∈ ℳ=,?+1R.

Exercise 5.3 What is the law of .8? The one for .?

The linear regression model will be studied in detail in Chapter 9.

5.2.2 The Analysis of Variance Model

Wewant to model a quantitative variable. as a function of one, or more,
qualitative explanatory variable(s) called factor(s). Under the Gaussian
assumption, the one-factor model with � modalities is written

∀8 ∈ J1, �K, ∀9 ∈ J1, =8K, .8 , 9 = �8 + �8 , 9 , (5.2)

where �1 , . . . , �� are unknown parameters and where �1,1 , . . . , �� ,=� are
independent samples of distribution(0, �2), with �2 to be estimated.

Exercise 5.4 (Matrix writing of this model) In order to write this model
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in matrix form, the observations are arranged by modality of the factor:

. = C(.1,1 , . . . , .1,=1 , .2,1 , . . . , .2,=2 , . . . , .� ,1 , . . . , .� ,=� ) .

Let = = ∑�
8=1 =8 . Write the model (5.2) in the form

. = -� + � ,

by specifying the design matrix - ∈ ℳ=,�R and � ∈ R� . What is the law of
.8 , 9 , .8 = C(.8 ,1 , . . . , .8 ,=8 ) and .?

The analysis of variance (ANOVA) model will be studied in detail in
Chapter ??.
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In this chapter, we will focus on the estimation of parameters in a regular
general linear model

. = -� + � , where � ∼(0= , �2�=)

and where - ∈ ℳ=,:R is a matrix of rank A0=:(-) = :.

Note that the linear model is a statistical model with : + 1 parameters :
� ∈ R: and � ∈ R.

6.1 Estimation of �

In this section, we focus on the estimation of the parameter vector � ∈ R: .
To do so, we use the least-squares method. We aim to find the vector
� that minimizes the distance between the image of the matrix - and
the observations .. In other words, the least-squares estimator of � is
defined by

�̂ ∈ argmin
'∈R:

‖. − -'‖22 := argmin
'∈R:

((�(') . (6.1)

In the previous formula, the norm ‖·‖2 is the one resulting from the
usual scalar product in R= , i. e.

∀D ∈ R= , ‖D‖22 =
〈
D
�� D 〉

=

=∑
8=1

D2
8 =

CDD .

Hence, in matrix form, it is possible to write

�̂ ∈ argmin
'

C(. − -')(. − -') .

Figure 6.1: SSR, SSE and SST Representa-
tion in relation to Linear Regression.

SST (Total Sum of Squares): Sum of the
squared difference between actual values
related to the response variable and the
empirical mean of actual values. It is also
called Variance of the Response.
SSE (Error Sum of Squares): Sum of the
squared difference between the actual and
predicted values. It is also termedasResid-
ual Sum of Squares.
SSR (Regression Sum of Squares): Sumof the
squared difference between the predicted
value and mean of actual values. It is also
termed as Explained Sum of Squares.
For more details, refer to Section 6.7.
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Figure 6.2: Geometric interpretation of
the least-squares estimator.

Theorem 6.1 Let . follow a regular linear model. The estimator �̂ obtained
by the least-squares method is

�̂ = (C--)−1 C-. .

Proof. Let %[-] be the orthogonal projection on ℐ<(-). Then:

min
�
‖. − -�‖2 = min

D∈ℐ<(-)
‖. − D‖2 = ‖. − %[-].‖2 .

See Figure 6.2 for an illustration. Hence, -�̂ = %[-]. = -(C--)−1 C-..
As - is assumed to be regular, we deduce that �̂ = (C--)−1 C-. by
uniqueness.

This first theorem gives us an explicit formula for the least-squares
estimator of the vector �. Interestingly, this formula is purely geometrical
and does not require any knowledge of the law of errors. Indeed, the
least-squares estimator of the vector � checks the following property :

-�̂ = %[-]. .

Moreover, since the solution is explicit, we can efficiently compute it,
and at a relatively low numerical cost: solving : linear systems, which is
usually straightforward. Thus, linear models can have large sizes and fit
very well in reality.

Remark 6.1 In the particular case where the errors are Gaussian,
the least-squares estimator �̂ corresponds exactly to the maximum
likelihood estimator. Indeed, in this case, we have :

ℒ(�, �2; H) =
=∏
8=1

5 (H8 ;�) ,

where 5 (H8 ;�) is the density of the normal distribution of the random
variable .8 . In other words,

ℒ
(
�, �2; (.1 , . . . , .=)

)
=

1
(2�)=/2�=

exp
(
− ‖. − -�‖

2

2�2

)
.

To obtain the maximum likelihood estimator �, we then maximize the
above log-likelihood as a function of �. However, by growth of the
exponential function, this amounts to minimize ‖. − -�‖2.

The following result explains the performance of the least-squares
estimator.

Theorem 6.2 Let . follow a regular linear model and �̂ be the least squares
estimator defined by (6.1). Then:

1. The least square estimator is unbiased:

E[�̂] = � and V0A(�̂) = �2(C--)−1 ;
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2. (Rao-Blackwell Theorem) Moreover, if the variables �8 are i.i.d of
centered Gaussian distribution, i.e. under (A3− 4), �̂ is the best
estimator among all unbiased estimators of �, i. e.

V0A(C��̃) > V0A(C��̂) ,

for any unbiased �̃ estimator of �, and any linear combination C��,
where � ∈ R: .

3. Last, under the same assumptions, �̂ is a Gaussian vector:

�̂ ∼ :

(
�, �2(C--)−1) .

Exercise 6.3 Prove Theorem 6.2. Lets recall that E[.] = -� and, for all
matrix �,V0A(�.) = �V0A(.) C�.

In addition to its unbiased nature, the strength of the least squares
estimator lies in the control of the precision of the estimate, thanks to
Theorem 6.2.1.

6.2 Adjusted Values and Residuals

Oncewe have estimated � by �̂, we can define .̂8 the predicted (or adjusted)
values by the model. For each observation .8 ,

.̂ = C(.̂1 , . . . , .̂=) = -�̂ = -(C--)−1 C-. = %[-]. = �. .

Moreover, the following residuals

�̂ = C(�̂1 , . . . , �̂=) = . − .̂ = (�= − %[-]). = (�= − �).

provide an estimate of the errors �8 .

Thus, given realizations H8 , we obtain the observed predicted values
Ĥ8 = (.̂8)obs = (-�̂obs)8 and the computed residuals (�̂8)obs = H8 − Ĥ8 .
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Figure 6.3: Interpretation of �2 as the
variance of . around the regression line

Proposition 6.4

1. .̂ ∼=(-�, �2�), where � = -(C--)−1 C- ;
2. �̂ ∼=(0= , �2(�= − �)) ;
3. The random variables .̂ and �̂ are independent;
4. The random variables �̂ and �̂ are independent.

Exercise 6.5 Prove Proposition 6.4.

Indications:

1. Use the law of �̂;
2. Note that �̂ = (�= − �). and . ∼(-�, �2�=);
3. Cf. Cochran’s theorem;

6.3 Estimation of �2

In this section, we are interested in the estimate of �2 ∈ R, the variance of
the errors, called the residual variance. By definition of the linear model,
the residual variance �2 is also given as the variance of . for - fixed. In
the context of linear regression, this is interpreted as the variance of .
around the theoretical regression line (cf. Figure 6.3). This definition of
�2 then suggests estimating it from the differences between the observed
.8 and the adjusted .̂8 values.

Theorem6.6 Let �̂ be the least squares estimator of�. Under the assumptions
(A1− 4), and if - ∈ ℳ=,:R, then

�̂2 =
‖ �̂‖2
= − : =

‖. − .̂‖2
= − : =

‖. − -�̂‖2
= − : =

((�(�̂)
= − :

is an optimal unbiased estimator of �2, independent of �̂. Moreover,

�̂2 ∼ �2

= − : "
2(= − :) .
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Exercise 6.7 (Proof of Theorem 6.6)

1. Show that (()(�̂) := ‖. − -�̂‖2 = ‖%[-]⊥.‖2 ;
2. Using Cochran’s theorem, show that (()(�̂) ∼ �2"2(= − :) ;

Deduce that �̂2 is an unbiased estimator of �2 ;
3. Using Proposition 6.4, show that �̂ and �̂2 are independent.

The estimation of �2 is therefore

(�̂2)obs = ‖(�̂)
obs‖2

= − : =
‖H − Ĥ‖2
= − : .

The denominator = − : comes from the fact that we have already
estimated : parameters in the model.

Remark 6.2 From a geometrical point of view,

I �̂ depends on the projection of the data on ℐ<(-), and
I �̂2 on the projection of the data on ℐ<(-)⊥.

6.4 Standard Errors

The standard error of the regression is the average distance that the
observed values fall from the regression line.

I According to Theorem 6.2, the variance-covariance matrix of �̂ is
given by Γ�̂ = �2 (C--)−1, where � is unknown. We estimate this
matrix by

Γ̂�̂ = �̂2 (C--)−1 .

Thus, V0A(�̂9) is estimated by �̂2 [(C--)−1]9 9 and, consequently,
the standard error of �̂9 , denoted B4 9 , is given by

B4 9 =

√
�̂2 [(C--)−1]9 9 .

Hence, the correlation matrix of �̂ has for element 9 , 9′:

A(�̂9 , �̂9′) =
�̂2 [(C--)−1]9 9′
B4 9 × B4 9′

=
[(C--)−1]9 9′√

[(C--)−1]9 9
√
[(C--)−1]9′ 9′

.
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I Likewise, the variance V0A(.̂) = �2� = �2-(C--)−1 C- is es-
timated by �̂2�. Therefore,

√
�̂2�88 is the standard error of .̂8 .

I Finally,
√
�̂2(1 − �88) is the error of �̂8 . We can then define �̂8/√�̂2

the standardized residual and �̂8/√�̂2(1 − �88 ) the studentized residual.

6.5 Confidence Intervals

The confidence interval measures the degree of precision one has on the
sample estimates. Two main sources of variation in the data can lead to
a lack of precision in estimating a quantity.

I Insufficient data: For example, in the case of a survey, one does
not interview the entire population but only a fraction of the
population. Similarly, only a finite number of measurements are
made for physical measurements, whereas, in theory, an infinite
number of measurements is desirable to obtain a perfect result.

I There can also be noise in the measurement, which is almost always
the case in practice.

Assume that we want to estimate a parameter denoted '. The confidence
interval �H , at the confidence level 1 − , for an observation ., is the
interval in which, for any value '

P'
[
. | ' ∈ �H

]
> 1 −  .

This does not mean that “the probability that the true value of ' falls
in �H is 1 − ”, which would not make sense since this value is not a
random variable. It means that “if the true value of ' is not in �H , the
a priori probability of the observation outcome H we obtained was less
than ”. For example, suppose the parameter ' is not in the interval.
In that case, the observation H corresponds to a rare phenomenon for
which the confidence interval does not contain the true value.

6.5.1 Confidence Interval for �9

Given that �̂ ∼:

(
�, �2(C--)−1) , we have �̂9 ∼:

(
�9 , �2[(C--)−1]9 9

)
.

Therefore,
�̂9 − �9√

�2[(C--)−1]9 9
∼ (0, 1) .

Moreover,
(= − :) �̂2 ∼ �2"2(= − :) .
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Otherwise, these two randomvariables are independent.Hence,Cochran’s
theorem ensures that:

) =

�̂9 − �9√
�2 [(C--)−1]9 9√
(= − :)�̂2

(= − :)�2

=
�̂9 − �9

�̂
√
[(C--)−1]9 9

∼ T (= − :) .

If we denote by C=−:,1−/2 the (1 − /2)-quantile of the Student’s law with
(=− :) degrees of freedom, then the confidence interval of the parameter
�9 of security 1 −  is defined by :

��1−(�9) =
[
�̂9 ± C=−:,1−/2 × �̂

√
[(C--)−1]9 9

]
=

[
�̂9 ± C=−:,1−/2 B4 9

]
.

6.5.2 Confidence Interval for (-�)8

Let E[.8] = (-�)8 be the average response of .8 . We estimate it by
.̂8 = (-�̂)8 . Since �̂ ∼:

(
�, �2(C--)−1) , according to the properties of

Gaussian vectors, the distribution of .̂8 is

.̂8 = (-�̂)8 ∼ 
(
(-�)8 , �2 [-(C--)−1 C-]88

)
= 

(
(-�)8 , �2�88

)
,

with the notations introduced previously: � = -(C--)−1 C-. Moreover,
(= − :)�̂2 ∼ �2"2(= − :), and .̂ is independent of �̂2. Hence,

.̂8 − (-�)8
�̂
√
[-(C--)−1 C-]88

∼ T (= − :) .

The confidence interval of (-�)8 at the 1− confidence level is therefore
given by:

��1−
(
(-�)8

)
=

[
.̂8 ± C=−:,1−/2 × �̂

√
[-(C--)−1 C-]88

]
=

[
.̂8 ± C=−:,1−/2 × �̂

√
�88

]
.

Remark 6.3 Point estimation is possible without any assumption on
the distribution of the errors �, thanks to the method of least squares.
However, it is not the same for the estimation by confidence interval
(and for the tests): in this case, the (H4) assumption of Gaussianity is
mandatory.
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Figure 6.4: Confidence Interval and Pre-
diction interval bands in linear regression

6.6 Prediction

A linear model can also be used to make predictions, i. e. to predict the
expected value for the response .0 when the explanatory variables take
given values -0. This question has two facets:

1. One can be interested in the average behavior of .0, i. e. E[.0] for
these given values -0 of the explanatory variables.

2. We can also be interested in the real value that .0 will take if only
one trial is performed in these explanatory variables -0.

First, it is crucial to understand the difference between this two settings.
First one is related to the confidence interval of E[.0], and second one is
related to the prediction interval. Figure 6.4 illustrates this difference.
While confidence intervals represent the range of uncertainty associated
with the estimator of an unknown parameter, prediction intervals are
ranges of values that may contain future individual observations. More
precisely, we assume a new set of given values of the explanatory
variables-0 in both cases. Except that, in the first case, wewant to predict
an average response corresponding to these explanatory variables. And
in the second case, we want to predict a new “individual” value.

For example, suppose one is studying the relationship between the
weight and age of an animal. In that case, one can predict the value of
the 20-day weight either as the average weight of the animals at 20 days
or as the 20-day weight of a new animal. For the new animal, individual
variability must be taken into account, which increases the estimator’s
variance and, thus, the interval’s width.

More generally, the prediction interval is always wider than the con-
fidence interval because of the additional uncertainty associated with
predicting an individual value. The prediction interval also depends on
the quality of the model and its adequacy to the region of interest.

6.6.1 Confidence Interval for -0�

We consider new values for the explanatory variables, gathered in the
linear vector -0 ∈ ℳ1,:R. The average response is then -0�.

The estimator of -0� is .̂0 = -0�̂. By the same arguments as before, the
distribution of .̂0 is:

.̂0 = -0�̂ ∼ 
(
-0�, �

2 -0(C--)−1 C-0
)
.

So, the confidence interval of -0� at the confidence level of 1 −  is
written:

��1−(-0�) =
[
-0� ± C=−:,1−/2 × �̂

√
-0(C--)−1 C-0

]
.



6.6 Prediction 69

6.6.2 Prediction Interval

Let the same new set of explanatory variables -0 ∈ ℳ1,:R. A new
observation .0, corresponding to -0, is written

.0 = -0� + �0 ,

where �0 is assumed to be independent of �8 for all 8 ∈ J1, =K, and
�0 ∼(0, �2).

To predict in which interval the result of a new trial will lie, we have to
consider two uncertainty factors:

I the uncertainty in the estimate of the average test result -0�,
I the uncertainty on the error term �0.

In the context of linear model, the parameter vector � is estimated by

�̂ = (C--)−1 C-. ,

where . = C(.1 , . . . , .=). The linear model then predicts the value

.̂0 = -0�̂ ∼ 
(
-0�, �

2 -0(C--)−1 C-0
)
.

According to the assumptions on �0, we have that .0 ∼(-0�, �2), and
.0 is independent of .̂0. Hence,

.0 − .̂0 ∼ :

(
0, �2 (1 + -0(C--)−1 C-0)

)
.

Moreover, according to Theorem 6.6,

(= − :) �̂2 ∼ �2 "2(= − :) .

Since �̂2 is independent of �̂ and �0 (because �0 is independent of all
the �8 , 8 ∈ J1, =K), it comes

.0 − .̂0

�̂
√

1 + -0(C--)−1 C-0
∼ T (= − :) .

Finally, if we denote by C=−:,1−/2 the (1 − /2)-quantile of the Student’s
law with (= − :) degrees of freedom, we obtain

P
(
.0 ∈

[
.̂0 ± C=−:,1−/2 × �̂

√
1 + -0(C--)−1 C-0

] )
= 1 −  .

Therefore, the prediction interval of the variable. for a new observation
at point -0 is defined by

��1−(.0) =
[
.̂0 ± C=−:,1−/2 × �̂

√
1 + -0(C--)−1 C-0

]
.

In particular, we can notice an increase of the variance with respect to

��1−(-0�) =
[
.̂0 ± C=−:,1−/2 × �̂

√
-0(C--)−1 C-0

]
.
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1: Attention! In French, we use the nota-
tions SCT for “Somme des Carrés Totale”,
SCE for “Somme des Carrés Expliquée”
(by regression), and SCR for “Somme
des Carrés Résiduelle”. In particular, the
French notation SCE (“Somme des Car-
rés Expliquée” by the regression) corre-
sponds to the English notation SSR (re-
gression sum of squares). And conversely,
the French notation SCR corresponds to
the English SSE.

Example 6.1 A light bulb manufacturer wants to estimate the burn
time of his bulbs. He takes a random sample of 100 bulbs and records
their burn time to failure in a spreadsheet. He finds a 95% confidence
interval of the mean of [1230, 1265] hours. Therefore, he is 95% sure
that the true average for the whole population of bulbs is within
this interval. He also calculates the prediction interval and finds
[1350, 1500] hours (for specific levels of the input manufacturing
parameters). Thus, he is 95% certain that the next bulb produced
under the same conditions will burn between 1350 and 1500 hours.

Remark 6.4 Do not risk learning these formulas by heart! You need
to understand (and be able to redo) the construction of confidence
intervals for a parameter, an average response, and a prediction
interval for a new response.

6.7 Decomposition of the Variance

The purpose of implementing a linear model is to explain the variability
of a variable . by other variables.

Definition 6.1 (Empirical variance) Let / be a real continuous random
variable. Suppose that we observe an =-sample (/1 , . . . , /=) having the same
distribution as /. We define the empirical variance of / as the variance
of the =-sample (/8)8∈J1,=K, taken as a discrete variable. Namely, given the
empirical mean /̄ = 1

=

∑=
8=1 /8 of /,

V̂0A(/) = 1
=

=∑
8=1

(
/8 − /̄

)2
.

Likewise,we candefine the empirical covariance between two continuous
variables, or between a continuous variable and a discrete variable, as
long as the associated samples/discrete variables are observed the same
number of times. Due to abuse of notation, the “hat” is sometimes
omitted.

We note:1

I the total variability of .:

(() = ‖. − .̄1= ‖2 =
=∑
8=1
(.8 − .̄)2 = = V̂0A(.) ;

I the variability explained by the model, i. e. by the predictors, or
regression sum of squares:

((' = ‖.̂ − .̄1= ‖2 =
=∑
8=1
(.̂8 − .̄)2 = = V̂0A(.̂) ;
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Figure 6.5:Decomposition of the Variance.

2: Be carefulo
Here, the formula is “reversed” in French
and in English...

I the residual variability, not explained by the model also called error
sum of squares:

((� = ‖. − .̂‖2 =
=∑
8=1
(.8 − .̂8)2 = = V̂0A(�̂) .

All these quantities are shown in Figure 6.1 and Figure 6.5.

Proposition 6.8 (Decomposition of the Variance) The total variance of .
admits the following decomposition:

V̂0A(.) = V̂0A(.̂) + V̂0A(�̂) i. e. (() = ((' + ((� .

Exercise 6.9 Prove this result.

We will see later that this decomposition leads to definitions specific to
each model depending on the model studied.

According to the least squares criterion used to estimate the parameters,
the objective is to minimize the residual variability ((� and thus
maximize the explained variability (('. To judge the fit of the model to
the data, we define the '2 criterion, which represents the proportion of
the variance of . explained by the model:2

'2 =
(('

(()
= 1 − ((�

(()
=
V̂0A(.̂)
V̂0A.

∈ [0, 1] .

The closer '2 is to 1, the better the model fits the data. We will discuss
the efficiency of this criterion in the following chapters.
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This chapter will focus on several tests that can be implemented on the
linear model. We will assume during all this part that the hypotheses
(A1− 4) are verified. The tests presented below cannot be used if these
constraints are not satisfied.

7.1 Nested Models

We consider a linear Gaussian model

. = -� + � , where � ∼=(0= , �2�=) . (7.1)

We are interested in investigating the nullity of some components of the
parameter � or some linear combinations of its components, for example
�9 = 0; �9 = �: = 0 or �9 = �: . These assumptions rely on the notion of
nested models.

Definition 7.1 Two models are said to be nested if one can be considered
as a particular case of the other. This is equivalent to comparing a reference
model to a reduced or constrained model.

This approach aims at determining whether the model used can be
simplified or not. Two examples of submodels are:

General model of simple linear regression: .8 = 0 + 1-8 + �8 ,
Submodel with slope nullity: .8 = 0 + �8 .

General model of the 1-factor analysis of variance: .8 , 9 = �8 + �8 , 9 ,
Submodel with group equality .8 , 9 = � + �8 , 9 .

In the following, we will consider two equivalent writings of the null
hypothesis ℋ0: the first is more practical, while the second is more
theoretical.

Writing 1: To specify the nullity of some components of the � param-
eter, we introduce a matrix � ∈ ℳ@:R where : denotes the number
of parameters of the reference model and @ ∈ J1, :K the number of
constraints tested. We try to find out if �� = 0@ . In other words, �
represent the coefficient of a linear combination, and we want to test

ℋ0 : “�� = 0′′@ against ℋ1 : “�� ≠ 0′′@

The matrix � ∈ ℳ@,: is assumed to be of rank @.
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Exercise 7.1We assume a model with : = 3 parameters. In the following
three cases, specify the matrix �:

1. Test the hypothesisℋ0 : “�2 = 0′′,
2. Test the hypothesisℋ0 : “�2 = �′′3 ,
3. Test the hypothesisℋ0 : “�2 = �3 = 0′′.

Writing 2: Let us consider the general framework of the linear model.
Let the model (7.1) and -0 be a matrix such that

ℐ<(-0) ⊂ ℐ<(-) and :0 = 38<
(
ℐ<(-0)

)
< : = 38<

(
ℐ<(-)

)
.

The model defined by
. = -0� + � (7.2)

is called a sub-model of the linear model defined in (7.1). Most often,
-0 is a matrix consisting of :0 column vectors of - with :0 < : and �
is a vector of length :0. We then note ((�0 the sum of squares of the
residuals of this sub-model, associated to = − :0 degrees of freedom and
defined as follows

((�0 = ‖. − -0�̂‖2 ,

where �̂ is the least squares estimator from model (7.2) for �. Insofar as
ℐ<(-0) ⊂ ℐ<(-) and by definition of the least squares estimators, we
can notice that ((�0 > ((�.

In order to try to know if the observations are from model (7.1) or (7.2),
we introduce the model

. = ' + � .

Therefore, testing for thepresenceof a submodel is equivalent to testing

ℋ0 : “' ∈ ℐ<(-0) against ℋ1 : “' ∈ ℐ<(-) \ ℐ<(-0)′′ .

7.2 Fisher-Snedecor Test

The Fisher-Snedecor test is the decision rule for rejecting, or not,

ℋ0 : “�� = 0@′′ , i. e. ℋ0 : “' ∈ ℐ<(-0)′′ .

I Rejectingℋ0 means deciding that �� ≠ 0@ , i. e. that some compo-
nents of �� are not null. Therefore, we do not have confidence
in the sub-model, and we prefer to continue working with the
reference model;
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Figure 7.1: Geometric interpretation of
the F-test

I Not to rejectℋ0 is not to exclude that all the components of �� are
null. In this case, keeping a too complicated model is unnecessary,
andwe prefer to keep the constrained and simplermodel to explain
the data.

7.2.1 Test Statistics and Decision Rule

Consider the framework of the general linear model (7.1), under the
(A1− 4) assumptions.

Theorem7.2 Under the null hypothesisℋ0, i. e. assuming that the sub-model
(7.2) is true,

� =

((�0 − ((�
: − :0
((�

= − :

=

‖.̂ − .̂0‖2
: − :0

‖. − .̂‖2
= − :

∼ ℱ (: − :0 , = − :) ,

where ℱ (: − :0 , = − :) denotes the Fisher distribution with parameters
(: − :0 , = − :).

Moreover, � is independent of .̂0 = -0�̂.

Exercise 7.3 1. Show that ((� = ‖%[-]⊥�‖2 ∼ �2"2(= − :);
2. Let � be a vector subspace of ℐ<(-) = [-] such that ℐ<(-) =
�
⊥
⊕ ℐ<(-0).

Show that ((�0 − ((� = ‖%��‖2 ∼
ℋ0

�2"2(: − :0);
3. Deduce that � ∼

ℋ0
ℱ (: − :0 , = − :);

4. Show that � is independent of .̂0 and �̂.

One can use Figure 7.1 as a basis for reasoning.
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Proposition 7.4 This Fisher-Snedecor test statistic can be rephrased as
follows:

� =
C[��̂][�(C--)−1 C�]−1[��̂]

@ �̂2 , where @ = : − :0 .

The demonstration does not present any conceptual difficulty but is very
calculating. At first reading, one can admit it.

Proof. Let Δ = �(C--)−1 C� and �̄ =
C[��̂][�(C--)−1 C�]−1[��̂]

@ �̂2 .

The demonstration is in four steps.

1. Let us show that Δ is invertible.

Since rk(�) = @, the application � : R: → R@ is surjective. Espe-
cially, C� is injective.
The matrix (C--)−1 being invertible, there exists � ∈ ℳ:R invert-
ible such that (C--)−1 = � C�, and

rk(Δ) = rk
(
�� C� C�

)
= rk

(
C� C�

)
= @ − dim

(
ker(C� C�)

)
.

However, using the invertibility of C� and the injectivity of C�,

C� C�G = $: ⇐⇒ C�G = 0: =⇒ G = 0@ .

Hence ker(C� C�) = {$@} and rk(Δ) = @, i. e. Δ is invertible.

2. Let us show that �̄ ∼ ℱ (@, = − :) underℋ0.

Given that �̂ ∼ :

(
�, �2(C--)−1) , we have ��̂ ∼ @

(
��, �2Δ

)
.

In particular, underℋ0, ��̂ ∼@

(
0@ , �2Δ

)
.

As above, Δ being invertible, there exists Λ ∈ ℳ@R invertible
such that Δ = Λ CΛ. Hence, underℋ0, CΛ��̂ ∼@

(
0@ , �2�@

)
. We

therefore deduce that

C[CΛ��̂][CΛ��̂]
�2 ∼ "2(@) .

Moreover, (=− :) �̂2 ∼ �2"2(=− :) and �̂ and �̂2 are independent.
Hence, by definition of the Fisher distribution,

C[CΛ��̂][CΛ��̂]
�2 @

(= − :) �̂2

(= − :) �2

=

C[��̂][�(C--)−1 C�]−1[��̂]
@ �̂2 ∼ ℱ (@, = − :) .

3. Let us show that � = �̄.

Note that

‖. − -0�̂‖2 = min
�∈R@
‖. − -0�‖2 = min

D∈ℐ<(-0)
‖. − D‖2

= min
D∈-(ker(�)

‖. − D‖2 = min
�∈ker(�)

‖. − -�‖2

:= ‖. − -�̄‖2 .
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1: However, a matrix has to be inverted.
There is no magic formula!

The vector �̄ minimizes ‖. − -�‖2 under the constraint � ∈
ker(�). To determine �̄, we then solve the following constrained
optimization problem: Let � ∈ R,

%

%�

[
C(. − -�)(. − -�) + � C��

]
= 0:

⇐⇒ %

%�

[
C.. − C� C-. − C.-� + C� C--� + � C��

]
= 0:

⇐⇒ −2 C-. + 2 C--� + � C� = 0: .

Hence,
�̄ = (C--)−1 C-. − �

2
(C--)−1 C� .

Using the constraint �̄ ∈ ker(�) and the invertibility of Δ, we get
�/2 = Δ−1�(C--)−1 C-., and by putting all the pieces together,

�̄ = (C--)−1 C-. − (C--)−1 C�Δ−1�(C--)−1 C-.

= �̂ − (C--)−1 C�Δ−1��̂ .

Therefore,

‖-�̂ − -0�̂‖2 = ‖-�̂ − -�̄‖2 = ‖(C--)−1 C�Δ−1��̂‖2

= C(��̂)Δ−1�(C--)−1 C--(C--)−1 C�Δ−1(��̂)
= C(��̂)Δ−1(��̂) ,

and by definition �̂2 = ‖. − .̂‖2/= − :.

4. Let us show that @ = : − :0.

Let (41 , . . . , 4:−@) be a basis of ker(�). So (-41 , . . . , -4:−@) is a
generating family of -(ker(�)). It is also a free family as - is
injective. Thus dim(-(ker(�))) = dim(ℐ<(-0)) = : − @ = :0.

This last expression has the advantage of not requiring the estimation of
the constrained model to testℋ0 : “�� = 0@′′ againstℋ1 : “�� ≠ 0@′′.1

In the following, we will note �obs the observed value of the random
variable �.

The quantity of interest in the construction of our Fisher test is Δ(((�) =
((�0 − ((�. Intuitively, if the observed value of Δ(((�) is substantial,
there is little chance that the observations of . are “from” the sub-
model. On the other hand, if the observed value of Δ(((�) is small, the
original model can most likely be simplified: the sub-model explains
the observations insofar as ((�0 is comparable to ((�. Therefore, the
rejection zone with a first-order risk  writes

ℛ = {� > 5@,=−:,1−} ,

where 5@,=−:,1− is the (1 − )-quantile of the Fisher distribution of
degrees of freedom @ = : − :0 and = − :.



78 Ch. 7 Fisher-Snedecor Test

7.3 Special Case Where @ = 1: Student’s Test

In the particular case where we test the nullity of a single linear combi-
nation of the components of the parameter, i. e. @ = 1 and � ∈ ℳ1,:R,
then the null hypothesis can be written as

ℋ0 : “�� = 0′′ .

We then have �(C--)−1 C� ∈ R, and the random variable � writes as
follows:

� =
(��̂)2

�̂2 �(C--)−1 C�
.

� follows a Fisher distribution with 1 and = − : degrees of freedom.
However, a property of the Fisher-Snedecor distribution ensures that a
Fisher-Snedeor distribution with 1 and < degrees of freedom is nothing
but the square of a Student distribution with < degrees of freedom.
Therefore, we obtain the following equality: If Φ ∼ ℱ (1, = − :) and
) ∼ T (= − :), then

P
[
Φ 6 51,=−:,1−

]
= 1 −  = P

[
)2 6 51,=−:,1−

]
.

We therefore deduce the following property on quantiles:

51,=−:,1− = C2
=−:,1−//2 .

According to Fisher’s test, we reject the hypothesisℋ0 if � > 51,=−:,1−.
Yet, we have the following equivalence

� 6 5@,=−:,1− ⇐⇒ |��̂ | 6 C=−:,1−/2 × �̂
√
�(C--)−1 C� .

Hence the confidence interval at security level 1− of �� is

��1−(��) =
[
��̂ ± C=−:,1−/2 × �̂

√
�(C--)−1 C�

]
.

Finally, the test consists of rejecting the null hypothesis if and only if 0
does not belong to the confidence interval of ��.

Exercise 7.5 Directly construct the Student’s t-test of nullity of the parameter
�9 at the  level.
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7.4 Confidence Interval (Region) for ��

7.4.1 Confidence Interval for �� ∈ R

Let’s start with the confidence interval for a linear combination �� ∈ R.
We keep to the notations of Section 7.3. As �̂ ∼ :(�, �2(C--)−1),
we have ��̂ ∼ (��, �2Δ), where Δ = �(C--)−1 C� ∈ R. Moreover,
(= − :)�̂2 ∼ �2"2(= − :), and �̂ and �̂2 are independent. Then,

��̂ − ��
�̂
√
Δ

∼ T (= − :) .

This gives the following confidence interval at confidence level 1 − :

��1−(��) =
[
��̂ ± C=−:,1−/2 × �̂

√
�(C--)−1 C�

]
.

7.4.2 Confidence Region for �� ∈ R@

Suppose now that, as in Section 7.2, �� is of dimension @ > 1.

Recall that the set of 20 accepted for a test ℋ0 : “�� = 20
′′ against

ℋ1 : “�� ≠ 20
′′, at the -level, defines a confidence interval at the 1 − 

confidence level. In particular, this definition does not require 20 to be in
R. We can therefore generalize the construction of confidence intervals
to any dimension.

Let 20 be any particular value of R@ . We have ��̂ − �� ∼ @(0@�2Δ),
where Δ = �(C--)−1 C� ∈ ℳ@R. Then,

C(��̂ − ��)Δ−1 (��̂ − ��)
�2 ∼ "2(@) .

Morover, (=− :)�̂2 ∼ �2"2(=− :), and the two statistics are independent.
Hence, still using the same arguments, we deduce that

Φ :=
C(��̂ − ��)Δ−1 (��̂ − ��)

@�̂2 ∼ ℱ (@, = − :) .

Last,

P
(
Φ 6 5@,=−:,1−

)
= 1 − 

⇐⇒ P
(
C(��̂ − ��)Δ−1 (��̂ − ��]) 6 @ �̂2 5@,=−:,1−

)
= 1 − 

⇐⇒ P
(
�� ∈ ℰ1−(��)

)
= 1 −  ,

where ℰ1−(��) is the confidence ellipsoid defined by

ℰ1−(��) =
{
D ∈ R | C(��̂ − D) (�(C--)−1 C�)−1 (��̂ − D) 6 @ �̂2 5@,=−:,1−

}
.

The set of 20 ∈ R@ accepted by the testℋ0 : “�� = 20
′′ againstℋ1 : “�� ≠

20
′′, at the -level, forms the ℰ1−(��) confidence ellipsoid defined

above.
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8.1 Singular Models

Up to now,we have restricted ourselves to studying regular linearmodels.
However, some models cannot be parameterized in a regular way: they
are naturally over-parameterized. A typical example is the additive model
in the analysis of variance (ANOVA) with two factors (cf. Chapter 12).

Consider, for instance, the case where the two factors both have two
levels, and we observe the four combinations once and only once. So,
with the notations seen in Chapter 1, we have :

∀8 ∈ {1, 2} , ∀9 ∈ {1, 2} , .8 , 9 = � + 08 + 1 9 + �8 , 9 .

In particular, the parameters of the model and the design matrix write
respectively

� =

©«
�
01
02
11
12

ª®®®®®¬
and - =

©«
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

ª®®®¬ .
Here, it is obvious that - is singular. Indeed, its kernel is not restricted
to the null vector: C(2,−1,−1,−1,−1) ∈ Ker(-) for instance. The values
�, 08 , 18 ,8 ∈ {1, 2}, are therefore not uniquely identifiable. Actually, the
model is over-parameterized: we have five unknown parameters for only
four observations.

Definition 8.1 A linear model is said to be singular or non-regular when
the matrix - is non-injective, i. e. if there exists � ≠ 0: such that -� = 0= .

In this case :

I -�̂ remains unique, since it is the orthogonal projection of . onto
ℐ<(-);

I On the other hand, �̂ is not unique. Indeed, if �̂ is a solution, then
for all D ∈ Ker(-), �̂ + D is still a solution.

Moreover, if - is not regular, then the matrix CA-- is not invertible. To
handle this issue, we define hereafter the notion of generalized inverse.

Definition 8.2 (Generalized inverse) Let " be a matrix. We define a
generalized inverse of ", denoted "†, by ""†" = ".

This construction is alwayspossible. Indeed,- ↦→ C-- defines a bĳective
application of Ker(-)⊥ on itself. It is therefore sufficient to neglect the
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part contained in the kernel: We define (C--)† as the true inverse
on Ker(-)⊥, arbitrarily completed on Ker(-). Hence, the definition of
(C--)† is far from unique!

It is then possible to generalize the results of the regular case.

Proposition 8.1 If (C--)† is a generalized inverse matrix of C--, then
�̂ = (C--)† C-. is a solution of the normal equations

(C--)� = C-. .

Proof. By definition of the transposition operation, pour tout E ∈ R: ,〈
-E

��%[-]⊥. 〉
=

〈
E
�� C-%[-]⊥. 〉

= 0

and in particular

C-. = C-%[-]. + C-%[-]⊥. =
C-%[-]. .

Thus, there exists D ∈ R: such that C-. = C--D. Last(
C--

)
�̂ = (C--)(C--)† C-.

= (C--)(C--)† C--D = C--D = C-. .

Remark 8.1 This estimator is not unique anddepends on the definition
chosen for (C--)†. On the other hand, as said before, the vector -�̂
remains unique, even if the matrix - is singular.

In general, we prefer to remove the indeterminacy on �̂ by setting
constraints to give a more intuitive meaning to the estimated parameters
composing �.

8.1.1 Constraints on Identifiability

Suppose the matrix - is singular of rank A < : so that there are : − A
redundant parameters.

Proposition 8.2 Let " ∈ ℳ:−A,:R be a matrix of rank : − A such that
Ker(") ∩ Ker(-) = {0:}. Then:

I The matrix (C-- + C"") is invertible and its inverse is a generalized
inverse matrix of C--;

I The vector �̂ = (C-- + C"")−1 C-. is the unique solution of the

system

{
C--� = C-.
C"� = 0:−A .
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Exercise 8.3 Prove Proposition 8.2.

1. To show that C-- + C"" is invertible, show that the matrix

� =

(
-

"

)
∈ ℳ=+:−A,:R

is injective. Thus, C�� is invertible.
2. Consider the following minimization problem:

6 : � ↦→ ‖. − -�‖2 + ‖"�‖2.

Write 6(�) as 6(�) = ‖.̃ −��‖|2 with .̃ to be specified. Deduce that

�̂ is a solution of the system

{
C--� = C-.
C"� = 0:−A .

3. Show the uniqueness of the solution.

The choice of the constraints is not always obvious. Moreover, we obtain
a corresponding estimator for each constraint, which can sometimes be
confusing.

Example 8.1 Let’s take the example of the one-factor analysis of
variance with differential effect. For simplicity, we assume that � = 4.
The model writes as follows:

∀8 ∈ J1, 4K ,∀9 ∈ {1} , .8 , 9 = � + 8 + �8 , 9 .

Or, in matrix form

� =

©«
�
1
2
3
4

ª®®®®®¬
and - =

©«
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

ª®®®¬
In particular, the - matrix associated with the model is singular.
We must therefore impose a constraint (called identifiability) on the
vector �. This constraint can be stated by choosing a matrix with 1
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row (number of redundant parameters) and : columns (number of
parameters in the model). One possibility is to consider

" =

(
0 1 1 1

)
.

The corresponding constraint is

"� = 0 ⇐⇒ 1 + 2 + 3 + 4 = 0 .

In other words, we impose that the sum of the differential effects is
zero. We can check that the conditions of the previous proposition
are well satisfied: the suggested estimator can then be constructed.

See Chapter 11 for some explanations on the vocabulary used in the
previous example.

8.1.2 Estimable Functions and Contrasts

Therefore, it is always possible to construct an estimator in the presence
of a singular matrix. And so, what about the tests? In particular, are
these constraints systematically necessary?

Most of the quantities we wanted to test are � functions with no chosen
identifiability constraints. We say that they are estimable because they
are intrinsic.

Definition 8.3 (Estimable function) A linear combination �� is said
to be an estimable function (of parameter � ) if it does not depend on the
particular choice of a solution of the normal equations.

We characterize these functions as those written �� = �-�, where � is a
matrix of full rank.

Definition 8.4 (Contrast) We call contrast an estimable function �� such
that �1 = 0, where 1 denotes the unit vector.

In analysis of variance, most of the linear combinations we test are
actually contrasts (see Chapter 11). In the previous example, 1 − 2 is a
contrast.

8.2 Orthogonality

8.2.1 Orthogonality for Regular Models

Orthogonality is a notion that can significantly simplify the resolution
and understanding of a linear model. A linear model usually admits a
natural decomposition of the � parameters (see example below) and,
consequently, a decomposition of the - associated matrix. We focus here
on the possible orthogonality of the different spaces associated with this
decomposition (orthogonality will always be understood hereafter in
the sense of orthogonality related to the usual Euclidean scalar product).
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The problem will be more or less delicate depending on whether the
model is regular. First, let us illustrate by two examples what parameter
decomposition means.

Example 8.2 (Multiple linear regression) Let the multiple linear
regression model on three variables G(1) , G(2) and G(3): Given = > 4,

∀8 ∈ J1, =K , .8 = � + �1G
(1)
8
+ �2G

(2)
8
+ �3G

(3)
8
+ �8 .

The vector � has four coordinates – �, �1 , �2 , �3 – and thematrix- has
four columns. Hence, we naturally want to decompose - according to
its column vectors. More precisely, we speak in this case of partition
(of the matrix) into four elements, which amounts to writing the
latter as a concatenation of 4 column vectors. The orthogonality of
the partition then corresponds strictly to the orthogonality of the four
vector spaces [1], [G(1)], [G(2)] and [G(3)].

Example 8.3 (Quadratic regression) Consider the quadratic regression
model on G(1) and G(2): Given = > 6, for all 8 ∈ J1, =K,

.8 = � + �1G
(1)
8
+ �2G

(2)
8
+ �1

(
G
(1)
8

)2 + �2
(
G
(2)
8

)2 + �G(1)
8
G
(2)
8
+ �8 .

Here, rather than asking, as before, for the orthogonality of each of
the regressors (which would be a lot to ask), we can define the natural
partition corresponding to:

I the constant �;
I the linear effects �1, �2;
I the squared effects �1, �2;
I the product effect �.

The orthogonality of the partition is then defined as the orthogonal-
ity of the vector subspaces: [1],

[ (
G(1) , G(2)

) ]
,
[ ( (
G
(1)
8

)2
,
(
G
(2)
8

)2) ] and[
G(1)G(2)

]
Consequently, it is clear from these two examples that we should speak
of a model with an orthogonal partition rather than an orthogonal
model.

The following definition formalizes these examples.

Definition 8.5 Consider a regular general linear model . = -� + �, and a
partition into < terms of - and �, i. e.

. = -1�1 + . . . + -<�< + � ,

where the matrix for all 9 ∈ J1, <K, there exists : 9 ∈ J1, :K such that∑<
9=1 : 9 = :, and -9 ∈ ℳ=,: 9R and �9 ∈ R: 9 We say that this partition is

orthogonal if the vector subspaces of R= , [-1], . . . , [-<], are orthogonal.

A simple consequence of the orthogonality of a linear model is that
the information matrix C-- has a diagonal block structure, where each
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block is associated with an element of the partition. Most often, the
partition of the parameter vector � into different effects comes from:

I in regression, from the different variables;
I in analysis of variance, from the decompositions into interactions.

Orthogonality gives statistical models the following two properties:

Proposition 8.4 Let be a regular linear model with an orthogonal partition:
. = -1�1 + . . . + -<�< + � Then:

1. The least squares estimators of the different effects �̂1 , . . . , �̂< are
uncorrelated and independent under the Gaussian hypothesis (H4);

2. For ℓ ∈ J1, <K, the expression of the �̂ℓ estimator does not depend on
the presence or absence of the other �9 terms in the model.

Thus, orthogonality simplifies the computations, making it easy to
obtain an explicit expression for the estimators. Moreover, it gives an
approximate independence between the tests of the different effects: the
tests on orthogonal effects are linked only by the estimate of �2.

8.2.2 Orthogonality for Singular Models

When the model is singular, it is necessary to consider the identifiability
constraints. Therefore, we carry out the same partition procedure in
orthogonal spaces, but while taking into account the system of con-
straints, i. e. the partition � 9�9 = 0 such that the applications-9 Ker(� 9 )
are injective.

Definition 8.6 Consider the following partition of a linear model:

. = -1�1 + . . . + -<�< + � .

Let a system of constraints �1�1 = 0, . . . , �<�< = 0 which make the model
idenifiable. We say that these constraints make the partition orthogonal if the
vector subspaces

∀9 ∈ J1, <K , +9 =
{
-9�9 | �9 ∈ Ker(� 9)

}
are orthogonal.

This notion is close to the regular case. However, the notion of orthog-
onality depends here on the chosen constraints. The idea is to choose
constraints that make the model orthogonal. We will see that this defini-
tion makes sense with the essential example of the analysis of variance
model with two crossed factors (see Chapter 12).



Figure 9.1: Description of the data: Bottom,
boxplot of the different quantitative vari-
ables. Top, graphical representation of the
two by two correlations of the quantitative
variables.
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9.1 Introduction

9.1.1 Illustrative Example

To illustrate the concepts discussed in this chapter, we will consider
the following example: We are interested in the possible relationship
between a man’s weight and various physical characteristics. For 22
healthy men aged 16 to 30, we have:

I .: weight in kg;
I -1: maximum circumference of the forearm in cm;
I -2: maximum circumference of the biceps in cm;
I -3: distance around the chest directly under the armpits in cm;
I -4: distance around the neck, measured approximately halfway

up, in cm;
I -5: distance around the shoulders, measured at the point of the

shoulder blades, in cm;
I -6: distance around the waist at the trouser line, in cm;
I -7: height from head to feet, in cm;
I -8: maximum circumference of the calf in cm;
I -9: circumference of the thigh, measured halfway between the

knee and the top of the leg, in cm;
I -10: circumference of the head in cm.

The dataset mensurations.txt illustrating this chapter is available on
the moodle page of the course.

Figure 9.1 shows some descriptive statistics for our data set. We refer
to Chapter 1 for an explanation of the different ways to represent
quantitative variables.

9.1.2 Regression

Regression is one of the best-known and most widely applied statistical
methods for analyzing quantitative data. It establishes a relationship
between a quantitative variable and one or more other quantitative
variables. Suppose we are interested in the relationship between two
variables (e.g., weight versus maximum forearm circumference -1). In
that case, we speak of simple regression by expressing one variable as a
function of the other. We refer to multiple regression if the relationship
is between one variable and several other variables (e.g., weight as a
function of all other quantitative variables). Implementing a regression
requires a causal relationship between the variables considered in the
model.
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Figure 9.2: Plot of weight as a function
of maximum forearm circumference. In
blue, the fitted simple linear regression
line.

This method can be implemented on quantitative data observed for =
individuals and presented as

I a quantitative variable . taking the value .8 for the individual
8 ∈ J1, =K called the variable to be explained or response variable,

I ? quantitative variables G(1) , . . . , G(?) taking respectively the values
G
(1)
8
, . . . , G

(?)
8

for the individual 8, called explanatory variables or
predictors.

If ? = 1, we are in the case of simple regression. When the values taken
by an explanatory variable are chosen by the experimenter, we say that
the explanatory variable is controlled.

In our example, = = 22, . is the weight variable and ? = 10

Consider a pair of quantitative random variables (-,.). If there is a
relationship between these two variables, the knowledge of the value
taken by - modifies our uncertainty concerning the realization of .:
it generally decreases it. If we admit that there is a cause and effect
relationship between - and ., the random phenomenon represented by
- can be used to predict the one represented by. and the link is written
in the form .̂ = 5 (-). We say that we regress. on - . The challenge is to
choose 5 wisely, so that the estimation of. is unbiased, i. e. E[.̂−.] = 0,
and with a minimal prediction error � = .̂ − ..

In the most frequent cases, we choose the set of affine functions, i. e.

G ↦→ �0 + �1G or
(
G(1) , . . . , G(?)

)
↦→ �0 + �1G

(1) + . . . + �?G(?) ,

and we speak of linear regression.

9.1.3 Simple Linear Regression Model

Consider a sample of = individuals. For an individual 8 ∈ J1, =K, we
have observed:

I .8 the value of the quantitative variable . (e.g. the weight),
I G8 the value of the quantitative variable G (e.g. the maximum

circumference of the forearm)

We want to study the relationship between these two variables, and in
particular, the effect of G (explanatory variable) on . (response variable).
First, we can represent this relationship graphically by drawing the
cloud of = points with coordinates (G8 , .8)8∈J1,=K (see figure 6.2). In the
case where the point cloud is of “linear” form, we will try to fit this
point cloud by a line. The relationship between .8 and G8 is then written
as a simple linear regression model:{

.8 = �0 + �1G8 + �8 , 8 ∈ J1, =K ,

�1 , . . . , �= i.i.d. of law(0, �2) .
(9.1)
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Thefirst part of themodel�0+�1G8 represents themean of.8 given G8 and
the second part �8 the difference between this mean and the value of .8 .
The scatterplot is summarized by the line of equation H = �̂obs

0 + �̂obs
1 G.

Below, we present the results obtained with the lm command for this
example of simple linear regression. In particular, �̂obs

0 = −68.644 and
�̂obs

1 = 5.134. We can also read their respective standard error in the
second column.

> reg.simple = lm(Y~X1,data=Data)

> summary(reg.simple)

Call:

lm(formula = Y ~ X1, data = Data)

Residuals:

Min 1Q Median 3Q Max

-9.3981 -1.9234 -0.3646 2.8012 8.7678

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -68.644 15.589 -4.403 0.000274 ***
X1 5.134 0.560 9.167 1.34e-08 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.926 on 20 degrees of freedom

Multiple R-squared: 0.8078, Adjusted R-squared: 0.7981

F-statistic: 84.03 on 1 and 20 DF, $p$-value: 1.338e-08

Listing 9.1: Simple linear regression9.1.4 Multiple Linear Regression Model

Consider a sample of = individuals. For an individual 8 ∈ J1, =K, we
have observed:

I .8 the value of the quantitative response variable. (e.g. theweight),
I G

(1)
8
, . . . , G

(?)
8

thevalues of ? other quantitativevariables G(1) , . . . , G(?).

We want to explain the quantitative variable . by the ? quantitative
variables G(1) , . . . , G(?). The model is written{

.8 = �0 + �1G
(1)
8
+ . . . + �?G(?)8 + �8 , 8 ∈ J1, =K ,

�1 , . . . , �= i.i.d. of law(0, �2) .
(9.2)

Hereafter, the results obtained with the lm command for the multiple
linear regression example. The first two columns correspond respectively
to the estimates and the standard errors for each parameter.

> reg = lm(Y~.,data=Data)

> summary(reg)

Call:

lm(formula = Y ~ ., data = Data)
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Residuals:

Min 1Q Median 3Q Max

-2.5523 -0.9965 0.0461 1.0499 4.1719

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -69.51714 29.03739 -2.394 0.035605 *
X1 1.78182 0.85473 2.085 0.061204 .

X2 0.15509 0.48530 0.320 0.755275

X3 0.18914 0.22583 0.838 0.420132

X4 -0.48184 0.72067 -0.669 0.517537

X5 -0.02931 0.23943 -0.122 0.904769

X6 0.66144 0.11648 5.679 0.000143 ***
X7 0.31785 0.13037 2.438 0.032935 *
X8 0.44589 0.41251 1.081 0.302865

X9 0.29721 0.30510 0.974 0.350917

X10 -0.91956 0.52009 -1.768 0.104735

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.287 on 11 degrees of freedom

Multiple R-squared: 0.9772, Adjusted R-squared: 0.9565

F-statistic: 47.17 on 10 and 11 DF, p-value: 1.408e-07

Listing 9.2: Multiple linear regression 9.2 Estimation

9.2.1 General Results

The model (9.2) can be rewritten in the matrix form can be rewritten in
the matrix form

©«
.1
.2
...

.=

ª®®®®¬︸︷︷︸
.

=

©«
1 G

(1)
1 G

(2)
1 . . . G

(?)
1

1 G
(1)
2 G

(2)
2 . . . G

(?)
2

...
...

...
...

1 G
(1)
= G

(2)
= . . . G

(?)
=

ª®®®®®¬︸                            ︷︷                            ︸
-

©«
�0
�1
...

�?

ª®®®®¬︸︷︷︸
�

+
©«
�1
�2
...

�=

ª®®®®¬︸︷︷︸
�

,

where - ∈ ℳ=,?+1R (i. e. : = ? + 1). If the model is regular, we can
estimate the vector of the parameters � by the least-squares method.
Hence,

�̂ = (C--)−1 C-. ∼ (0, �2(C--)−1) .

We then deduce .̂8 = (-�̂)8 = �̂0 +
∑?

9=1 �̂9G
(9)
8

the adjusted value of .8
and the residual �̂8 = .8 − .̂8 , of observed value (�̂8)obs = H8 − Ĥ8 . The
variance �2 is estimated by

�̂2 =
‖. − -�̂‖2
= − (? + 1) =

1
= − (? + 1)

=∑
8=1
(�̂8)2 .

Moreover,
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I the standard error of �̂9 is B4(�̂9) =
√
�̂2 [(C--)−1]9+1, 9+1 ,

I the standard error of .̂8 is B4(.̂8) =
√
�̂2 [-(C--)−1 C-]88 =

√
�̂2 �88 ,

I the standard error of �̂8 is B4(�̂8) =
√
�̂2 (1 − �88) .

Exercise 9.1 We assume the simple linear regression framework of equation
(9.1). Show that the least squares estimators of �0 and �1 are given by:

�̂1 =
Ĉ>E(., G)
V̂0A(G)

=

=∑
8=1
(G8 − Ḡ)(.8 − .̄)

=∑
8=1
(G8 − Ḡ)2

,

�̂0 = .̄ − �̂1 Ḡ ,

where Ḡ =
1
=

=∑
8=1

G8 and .̄ =
1
=

=∑
8=1

.8 .

Indications: Minimize the least squares function

(0, 1) ↦→
=∑
8=1
(.8 − 0 − 1G8)2 .

9.2.2 Properties in Simple Linear Regression

In this section, we consider the framework of a simple linear regression
(Equation (9.1)). The following proposition gives properties between the
residuals and the values predicted by the model.

Proposition 9.2 Consider a simple linear regression model.

1.
=∑
8=1

�̂8 = 0 and
=∑
8=1

.̂8 =
=∑
8=1

.8 ,

2. The regression line passes through the point with coordinates (Ḡ , .̄),

3. The vector of residuals is not correlated with the explanatory variable:

Ĉ>E(G, �̂) = 0 ,
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4. The vector of residuals is not correlated with the fitted variable:

Ĉ>E(.̂, �̂) = 0 ,

5. The variance of . admits the decomposition

V̂0A(.) = V̂0A(.̂) + V̂0A(�̂) ,

6. The square of the correlation coefficient of G and . is written in the
following forms:

A2(G, .) = V̂0A(.̂)
V̂0A(.)

= 1 − V̂0A(�̂)
V̂0A(.)

.

We deduce that the empirical variance of . is the sum of an explained
variance V̂0A(.̂) and a residual variance V̂0A(�̂), and that A2(G, .) is the
ratio between the explained variance and the total variance.

Exercise 9.3 Prove Proposition 9.2. You may freely use the closed forms for
�0 and �1 obtained in Exercise 9.1.

9.2.3 The '2 Coefficient

9.2.3.1 Definition

The '2 coefficient, defined as the square of the correlation coefficient
of G and ., is a measure of the goodness of fit, equal to the ratio of the
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1: whose acronyms in English are always
so tricky compared to the French. Cf. Note
1 page 70.

variance actually explained to the variance to be explained:

'2 = A2(G, .) = V̂0A(.̂)
V̂0A(.)

.

Thus, '2 ∈ [0, 1] is interpreted as the proportion of variance explained by
the regression.

Note that the decomposition (5) in Proposition 9.2 is identical to that
introduced in Section 6.7, one being obtained by multiplying by = the
other. As a reminder:

(() = ((� + ((' ,

where1

I (() = ‖. − .̄1= ‖2 =
=∑
8=1
(.8 − .̄)2 = = V̂0A(.) is the total sum

of the (corrected) squares of .,

I ((' = ‖.̂ − .̄1= ‖2 =

=∑
8=1
(.̂8 − .̄)2 = = V̂0A(.̂) is the sum of

squares explained by the model, or regression sum of squares,

I ((� = ‖.−.̂‖2 =
=∑
8=1
(.8−.̂8)2 = = V̂0A(�̂) is the sum of squares

of the residuals, or error sum of squares.

Hence, to compute '2, we often use the expression

'2 =
(('

(()
= 1 − ((�

(()
.

In the simple linear regression example, the '2 value is 0.8078. We read
this value in the corresponding R code (Listing 21), second to last line. To
find the values of ((), ((' and ((�, we can use the anova command.

> anova(reg.simple)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 2038.88 2038.88 84.032 1.338e-08 ***
Residuals 20 485.27 24.26

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In the case of a multiple regression of. by G(1) , . . . , G(?), the multiple cor-
relation coefficient denoted A(., G(1) , . . . , G(?)) is defined as the empirical
linear correlation coefficient of . by .̂:

A(., G(1) , . . . , G(?)) = A(., .̂) .
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Hence, the coefficient '2 of the multiple regression is equal to the
square of the empirical A(., G(1) , . . . , G(?)). Here, in the multiple linear
regression example, the '2 value is 0.9772 (See Listing 30).

Note that the '2 is significantly better in the multivariate regression
case than in the simple regression case. Actually, this observation is true
overall, as described in the following graph.

9.2.3.2 Mechanical Increase of '2

When an explanatory variable is added to a model, the sum of squares of
the residuals decreases or at least remains stable. Indeed, if we consider
a model with ? − 1 variables

.8 = �0 + �1G
(1)
8
+ . . . + �?−1G

(?−1)
8
+ �8

then the estimated coefficients (�̂0 , �̂1 , . . . , �̂?−1)minimize

)(�0 , �1 , . . . , �?−1) =
=∑
8=1

[
.8 −

(
�̂0 , �̂1 , . . . , �̂?−1

) ]2
.

If we add a new explanatory variable G(?) to the model, we obtain

.8 = �0 + �1G
(1)
8
+ . . . + �?−1G

(?−1)
8
+ �?G(?) + �8

and the estimated coefficient, denoted (�̃0 , �̃1 , . . . , �̃?−1)minimize

#(�0 , �1 , . . . , �?) =
=∑
8=1

[
.8 −

(
�̂0 , �̂1 , . . . , �̂?

) ]2
,

which, by construction, satisfies the equality

#(�0 , �1 , . . . , �?−1 , 0) = )(�0 , �1 , . . . , �?−1) .

Hence the inequality:

#(�̃0 , �̃1 , . . . , �̃?) 6 #(�̂0 , �̂1 , . . . , �̂?−1 , 0) = )(�̂0 , �̂1 , . . . , �̂?−1) .

This proves the “mechanical” increase of '2 but without improving the
model, as we will see later.

9.3 Tests of the Nullity of the Model Parameters

In this paragraph, we investigate whether the proposed model can
be simplified or not, i. e. whether some explanatory variables G(9) are
negligible.
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9.3.1 Nullity of a Model Parameter

We want to study the effect of the presence of a given explanatory
variable G(9), where 9 ∈ J1, ?K. To do this, we test :

ℋ (9)0 : “�9 = 0′′ against ℋ (9)1 : “�9 ≠ 0′′ ,

where �9 is the parameter associated to the variable G(9). We set up for
this purpose a classical Student’s test.

Exercise 9.4 Construct Student’s statistical test to test ℋ (9)0 : “�9 = 0′′

againstℋ (9)1 : “�9 ≠ 0′′ at level .

In the previous examples of simple and multiple linear regression, the
last column of the Routputs shows the ?-value associated with the
nullity test for each of the �9 coefficients; the second-to-last column
displays the values of the test statistics. According to the R output shown
on Listing 21, we strongly reject the nullity of each of the coefficients in
the simple regression model for a 5% test. Similarly, according to the
output shown on Listing 30, we reject the nullity of the coefficients �0,
�6, and �7 in the multiple linear regression example for a 5% test.

Warning! Each nullity test is performed separately. So, beware of quick
conclusions!

9.3.2 Nullity of Some Model Parameters

Consider a reference model with ? explanatory variables. We want
to study the influence of @ explanatory variables (with @ 6 ?) on the
variable to be explained. This amounts to testing the nullity hypothesis
of @ parameters of the model:

ℋ0 : “�1 = �2 = . . . = �@ = 0′′ , where @ 6 ? .

Under the alternativehypothesis, at least oneof theparameters�1 , �2 , . . . , �@
is non-zero.

This test can be formulated as the comparison of two nested models,
one with ? + 1 parameters and the other with ? + 1 − @ parameters:
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I Underℋ0,

.8 = �0 + �@+1G
(@+1)
8
+ . . . + �?G(?)8 + �8 , ("0)

I Underℋ1,

.8 = �0 + �1G
(1)
8
+ . . . + �?G(?)8 + �8 . ("1)

Theℋ0 hypothesis can therefore be tested using the Fisher statistic:

� =

((�0−((�1
@

((�1
=−(?+1)

ℋ0∼ ℱ
(
@, = − (? + 1)

)
,

where ((�0 is the error sum of squares of the “reduced” model ("0)
underℋ0 and ((�1 is the error sum of squares of the reference model
("1). We compare � to the quantile 5@,=−?−1,1−. If � > 5@,=−?−1,1−, then
we rejectℋ0.

Note that in the casewhere @ = 1, we test the nullity of a single parameter
of the model, and we find the same conclusions as with the previous
Student’s t-test.

In our multiple linear regression example, we want to test the submodel
composed only of the variables-1,-6, and-7. Using the anova function,
we will perform a Fisher test between this sub-model and the full model.

> reg0 = lm(Y~X1+X6+X7,data=Data)

> anova(reg0,reg)

Analysis of Variance Table

Model 1: Y ~ X1 + X6 + X7

Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 112.149

2 11 57.524 7 54.625 1.4922 0.2653

The ?-value being 0.2653, we accept the sub-model ("0).

Exercise 9.5 In the output R of anova(reg0,reg) above, what does each
of the numerical values correspond to?

9.3.3 Nullity of all Model Parameters

In this section, we want to test the null hypothesis of all the parameters
of the model (associated with the explanatory variables):

ℋ0 : “�1 = �2 = . . . = �? = 0′′ .
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This test compares the goodness of fit of the reference model with that of
the “white model”. This hypothesis, composed of ? constraints, means
that the ? parameters associated with the ? explanatory variables are
zero, i. e. that no explanatory variable present in the model can explain
the variable .. Underℋ0, the model is written :

.8 = �0 + �8 and �̂0 = .̄ .

Moreover, the error sum of squares ((�0 is equal to the total sum of
squares (().

Exercise 9.6 Show that Fisher’s test statistic in this case is written

� =

(('1
?

((�1
= − (? + 1)

=
'2

1 − '2 ×
= − ? − 1

?

ℋ0∼ ℱ (?, = − ? − 1) ,

where (('1 is the regression sum os squares of the reference model, and '2

is the fit criterion of the reference model.

We compare � to the quantile 5?,=−?−1,1−: If � > 5?,=−?−1,1−, then we
rejectℋ0, and we conclude that there is at least one non zero parameter
in the model.

In the example of the multiple linear regression, we can implement this
test with the anova function. We can also notice that the result of this
test is given directly in summary(reg) (see Listing 30).

> regwhite = lm(Y~1,data=Data)

> anova(regwhite,reg)

Analysis of Variance Table

Model 1: Y ~ 1

Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 2524.15

2 11 57.52 10 2466.6 47.168 1.408e-07 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here, the ?-value is 1.408 e−07, so we reject the hypothesis that all
coefficients are zero.
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Listing 9.3: Confidence interval for simple
regression

>confint(reg.simple,level=.9)

5 % 95 %

(Intercept) -95.530 -41.758

X1 4.168 6.099

Listing 9.4: Confidence interval for multi-
ple regression

> confint(reg)

2.5% 97.5%

(Intercept) -133.428 -5.606

X1 -0.099 3.663

X2 -0.913 1.223

X3 -0.308 0.686

X4 -2.068 1.104

X5 -0.556 0.498

X6 0.405 0.918

X7 0.031 0.605

X8 -0.462 1.354

X9 -0.374 0.969

X10 -2.064 0.225

9.4 Confidence Intervals

9.4.1 Confidence Interval for �9

We follow the general construction made in Section 6.5.1. Here : = ? + 1.
Using that

I �̂9 ∼ 

(
�9 , �

2 [C--]−1
9+1, 9+1

)
,

I
(
= − (? + 1)

)
�̂2 ∼ �2 "

(
= − (? + 1)

)
,

I �̂9 and �̂9 are independent,

we get that
�̂9 − �9

�̂
√
[C--]−1

9+1, 9+1

∼ T
(
= − (? + 1)

)
.

We then construct the confidence interval for the parameter �9 at the
1 −  confidence level as follows:

��1−(�9) =
[
�̂9 ± C=−(?+1),1−/2 × �̂

√
[C--]−1

9+1, 9+1

]
.

In R , we can easily obtain the confidence intervals for the �9 coefficients
using the confint function.

9.4.2 Confidence Interval for (-�)8

Using the construction made in Section 6.5.2, the confidence interval of
(-�)8 at the confidence level of 1 −  is therefore given by:

��1−
(
(-�)8

)
=

[
.̂8 ± C=−(?+1),1−/2 × �̂

√
[-(C--)−1 C-]8 ,8

]
.

9.4.3 Confidence Interval for -0�

For new observations G(1)0 , . . . , G
(?)
0 of the explanatory variables, we

define-0 = (1, G(1)0 , . . . , G
(?)
0 ) ∈ ℳ1,?+1R. The average response is then

-0� = �0 +
?∑
9=1

�9G
(9)
0 .

Using the construction made in Section 6.6.1, we obtain the confidence
interval of -0� at the confidence level of 1 − :

��1−(-0�) =
[
-0�̂ ± C=−(?+1),1−/2 × �̂

√
-0(C--)−1 C-0

]
.

In the simple linear regression example, see Figure 9.3.
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Figure 9.3: Prediction interval of ., in
dashed orange lines, and confidence inter-
val of -�0, in gray, for the simple linear
regression model.

9.5 Prediction Interval

Wewant to predict in which interval the result of a new trial G(1)0 , . . . , G
(?)
0

will lie. So, we want to construct a prediction interval for a new observa-
tion .0, corresponding to -0 = (1, G(1)0 , . . . , G

(?)
0 ):

.0 = -0� + �0 ,

where �0 is independent of all the �8 , 8 ∈ J1, =K, and distributed according
to a law(0, �2). Using the constructionmade in Section 6.6.2, we obtain
that the prediction interval of the variable . for a new observation -0 is
defined by

��1−(.0) =
[
-0�̂ ± C=−(?+1),1−/2 × �̂

√
1 + -0(C--)−1 C-0

]
.

Carefully note the difference between ��1−(.0) and

��1−(-0�) =
[
-0�̂ ± C=−(?+1),1−/2 × �̂

√
-0(C--)−1 C-0

]
.

In the simple linear regression example, the confidence intervals��1−(.0)
and I��1−(-0�) are shown in Figure 9.3.

Remark 9.1 To make predictions using this linear regression model,
we advise you to use this model only in the domain covered by the
data. Indeed, the studied phenomenon can be linear in the observed
domain and have a different behavior in another domain.

9.6 Selection of Explanatory Variables

In the presence of ? explanatory variables for which we do not know
which ones are really influential, we must look for a model to explain .
that is both efficient (smallest possible residuals) and economical (fewest
possible explanatory variables).

We will now focus on the study of the - matrix, i. e. the explanatory
variables themselves. In this part, we will see how to choose the model
that best fits our data and eliminate certain variables that are not very
explanatory to gain in interpretation. This problem of variable selection
is, in fact, a model selection problem.

9.6.1 General Framework for Model Selection

For the sake of simplicity, we present this problem in the context of
multiple linear regression. The tools developed here are more general
and can be used in a broader framework, often without additional
work.



100 Ch. 9 Linear Regression

Wegive ourselves a family ofmodelsℳ formally representing a family of
subsets of J1, ?K. This choice is made a priori and may not be exhaustive.
For example, we can consider

I Exhaustive family:ℳ = P({1, . . . , ?}) i. e. the family of all subsets
of J1, ?K,

I Growing family:ℳ = P({1, . . . , <})<∈J1,?K.

In the following, for < ∈ ℳ, we will note |< | the cardinal of <. Let
-(<) be the matrix consisting of the vectors G(9) for 9 ∈ <. We will also
assume that for all < ∈ ℳ the matrix -(<) is regular, i. e. of rank |< | + 1.
Note that the “+1” comes from the constant (of the intercept) which is
assumed to be systematically present in all models.

Assumptions about the true model: We assume that there exists <∗ ∈
ℳ, unknown, such that the true model is written :

. = �∗ + �∗ = -(<∗)�(<∗) + �∗ , where �∗ ∼=(0= , �∗2�=) ,

and where the vector �(<∗) ∈ R|<
∗ |+1 has all its coordinates non-

zero.

The idea of model selection techniques is to find the model from our
given collection that best explains our data. In other words, we are
looking for the best estimator, <0 ∈ ℳ, for the collection of models
we have chosen. Note that the modeler has chosen this family. This
leaves the possibility to add modeling constraints. But, it also implies
that a wrong choice concerning this collection of models will lead to an
inaccurate estimation of the true model.

Analysis models: Let the family of models < defined by,

. = �(<) + � = -(<)�(<) + � , where � ∼(0= , �2�=) ,

in correspondence withℳ.

To specify the modeling, we will use the following vocabulary:

Definition 9.1 Let an analysis model < ∈ ℳ

I If < = <? = J1, ?K, the model is said to be complete, i. e. all available
explanatory explanatory variables are significant;

I If <∗ ⊂ < with < ≠ <∗, we say that the model is over-fitted;
I If |< ∩ <∗ | < |<∗ |, we say that the model is wrong;
I If < ⊂ <∗ with < ≠ <∗, we say that the model is under-fitted.

Recall that eachmodel corresponds to a choice among all the explanatory
variables, and that there are therefore potentially superfluous explana-
tory variables. In case of over-fitting, i. e. if there are superfluous variables,
an over-fitted model is a model containing all the variables of the true
model plus a certain number of superfluous variables. A false model is
typically a model where not all the variables of the true model have
been chosen and some superfluous variables may have been chosen. A
special case is the sub-fitting corresponding to a false model containing
no superfluous variables.
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9.6.2 Some Criteria to Select a Model

To give a meaning to “best”, we need a criterion to quantify the quality
of an estimator. In other words, we give ourselves a function ' able
to quantify the gap between < and the true model <∗, and we try to
minimize this risk. In the following, we develop several ways to define
these selection criteria. Note that these criteria do not allow to find <∗,
but only to approach it.

This corresponds to the basics of model selection. For more details, see for
example [7].

9.6.2.1 The Adjustment Coefficients

In the situation where only a small number of regressors are involved,
there are already several approaches that are more or less directly
inspired by the tools studied above. To “test” the validity of a sub-model
< with respect to a larger model, there are two indices (or coefficients)
whose calculation and interpretation are pretty immediate.

A first possibility is to focus on the coefficient of determination:

'2
< =

(() − ((�(<)
(()

= 1 −
‖. − -(<)�̂(<)‖2

‖. − .̄1= ‖2
.

Therefore, this index compares the fitted values of . with the observed
values through ‖.̂(<) − .‖2, the denominator corresponding to a renor-
malization. The closer the ' coefficient is to 1, the better the fit of the
model to the data. If one has to choose between two explanatory models,
one is easily tempted to select the one with the higher coefficient of
determination.

However, it is important to temper this type of reasoning. Indeed, the
maximization of this criterion '2

< amounts to maximizing ‖. − .̂(<)‖2,
and it is clear that the quantity ‖. − .̂(<)‖2 = ‖%[-⊥(<)]‖

2 decreases for a
nested sequence of models. Therefore, maximizing '2

< leads for sure
to choose the complete model <: . The use of this type of criterion thus
favors the selection of strongly parameterized models. On the other
hand, for models with the same cardinal |< |, this coefficient can be used
to select an optimal model.

It is possible to improve the '2
< coefficient to allow the selection of

models with a different number of explanatory variables by defining
the adjusted determination coefficient '̃2

< . This coefficient enables to
take into account the number of selected regressors and thus proposes
a compromise between the adequacy and the parameterization of the
model. This index is defined by:

'̃2
< = 1 − = − 1

= − |< | − 1
((�(<)
(()

= 1 − = − 1
= − |< | − 1

‖. − -(<)�̂(<)‖2

‖. − .̄1= ‖2
.

The interpretation is similar to that of '2
< .
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9.6.2.2 Bottom-Up and Top-Down Strategy

In the presence of a small number of models, the adjustment coefficient
is a possible option. Otherwise, one can use a strategy based on Fisher’s
test and called top-down regression. The methodology is as follows:
we start with the model using all possible regressors. At each step, we
compute the Fisher statistic corresponding to the deletion of each of
the variables still present. We then delete the variable with the smallest
value, i. e.with the largest ?-value. In fact, at each step, we remove the
least significant variable in the sense of the Fisher test. We then repeat
this process until all the statistics are above a predetermined threshold,
i. e. when all the ?-values are below a predetermined threshold, for
example 5%.

Beware, this strategy can be extremely cumbersome to implement
depending on the number of variables in question (we can go up to |< |!
Fisher tests).

# Initialization: Let a threshold B and <[0] = {1, . . . , ?}.

# Iteration t:

Step 1: For any 9 ∈ <[C], we compute the ?-value ? 9 of
the Fisher sub-model test of

"0 : <[C] \ { 9} against "1 : <[C] ;

Step 2: 9̂ = argmax
9∈<[C]

? 9 ;

Step 3:
I If ? 9 > B, <[C+1] = <[C] \ { 9} and we go back to

step 1,
I Else, STOP.

Model selection by bottom-up regression uses exactly the same argu-
ments, except that we start with an emptymodel (without regressor, only
the intercept), and we add the most significant variables (in the sense of
Fisher’s test) until the p-values exceed a previously fixed threshold.

9.6.2.3 Oracle Estimator

The ℓ 2-risk is an usual criterion to measure the difference between the
true model <∗ and an analysis model < ∈ ℳ.

Definition 9.2 Let < ∈ ℳ. The ℓ 2-risk, or quadratic risk, between models
< and <∗ is defined by:

ℛ(<, <∗) = E
[�∗ − .̂(<)2

]
= E

[-(<∗)�(<∗) − -(<)�̂(<)2
]
,

where �∗ = -(<∗)�(<∗) and .̂(<) = -(<)�̂(<).
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For any < ∈ ℳ, we define �∗(<) = %[-(<)]�
∗, the orthogonal project of �∗

on the vector space ℐ<(-(<)). It is then possible to compute the ℓ 2-risk
explicitly.

Proposition 9.7 For all < ∈ ℳ,

ℛ(<, <∗) = �∗2(|< | + 1) + ‖�∗(<) − �
∗‖2 .

Proof. Let < ∈ ℳ and �∗(<) = %[-(<)]�
∗. We have:

ℛ(<, <∗) = E
[-(<)�̂(<) − �∗2

]
= E

[-(<)�̂(<) − �∗(<)︸             ︷︷             ︸
∈ℐ<(-(<))

+ �∗(<) − �
∗︸    ︷︷    ︸

∈ℐ<(-(<))⊥

2
]

= E

[-(<)�̂(<) − �∗(<)2
]
+ E

[�∗(<) − �∗2
]

according to the Pythagorean theorem

= E

[-(<)�̂(<) − �∗(<)2
]
+

�∗(<) − �∗2
.

Yet,

-(<)�̂(<) = %[-(<)]. = %[-(<)]
(
-(<∗)�(<∗) + �∗

)
= �∗(<) + %[-(<)]�

∗ .

Hence, -(<)�̂(<) − �∗(<)2
=

%[-(<)]�∗2
∼ �∗2"2(|< | + 1)

from Cochran’s theorem. Finally,

E

[-(<)�̂(<) − �∗(<)2
]
= �∗2(|< | + 1) .

Therefore, to minimize the distance between < and <∗, there is a
compromise to be found. If |< | is small, it will be the same for the
variance term �∗2(|< | + 1), at the expense of the bias term ‖�∗(<) − �

∗‖2.
On the contrary, for large values of |< |, one can hope to have a slight
bias, but at the risk of having a more significant error, which is reflected
in an increase of the �∗2(|< | + 1) term. This bias-variance trade-off is
very classical in this model selection framework.

Remark 9.2 By definition of �∗(<), as soon as<∗ ⊂ <, ‖�∗(<)−�
∗‖2 = 0.

To summarize, we have a measure of the quality of an estimator through
its ℓ 2-risk ℛ and our goal is to minimize this risk. Each model < has a
risk A< = '(<), and the best model in term of the ℓ 2-risk is the so-called
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oracle model
<0 ∈ argmin

<∈ℳ
A< . (9.3)

The oracle estimator is the best estimator in term of the risk ℛ, so we
would like to use this estimator to estimate <∗. Unfortunately, we cannot
use it in practice, since it cannot be computed from the data only. Actually,
<0 depends on the collection of risks {A< , < ∈ ℳ}, which is unknown
to the statisticians since it depends on the unknown signal <∗.

A natural idea to circumvent this issue is to replace the risk A< in (9.3)
by some estimator Â< of the risk and therefore estimate <∗ by

<̂ ∈ argmin
<∈ℳ

Â< .

The estimate <̂ can be computed from the data only, but we have a
priori no guarantee that it performs well. The main challenge now is to
provide some suitable Â< for which we can guarantee that the selected
estimator <̂ performs almost as well as the oracle <0.

9.6.2.4 Mallows’ �? Criterion

Let a model < ∈ ℳ. According to the Pythagorean theorem and the
Cochran theorem, we have:

E

[. − .̂(<)2
]
= E

[. − �∗(<)2
]
− E

[.̂(<) − �∗(<)2
]

= E

[. − �∗ + �∗ − �∗(<)2
]
− E

[.̂(<) − �∗(<)2
]

= E
[
‖. − �∗‖2

]
+ ‖�∗ − �∗(<)‖

2 − (|< | + 1)�∗2

= =�∗2 − ‖�∗ − �∗(<)‖
2 − (|< | + 1)�∗2 .

In other words

‖�∗ − �∗(<)‖
2 = E

[. − .̂(<)2
]
+ (|< | + 1)�∗2 − =�∗2 .

Since we want to find the optimal model <, we can neglect the term
−=�∗2, which does not depend on <. Therefore, Mallows propose to
estimate the bias term ‖�∗ − �∗(<)‖

2 by ‖. − .̂(<)‖2 + (|< | + 1)�∗2 [8].

If the variance of the target model <∗ is known, we then obtain the
criterion:

�?(<) = ‖. − .̂(<)‖2 + 2|< |�∗2 ,

and we will select the model <̂�% satisfying:

<̂�% ∈ argmin
<∈ℳ

�?(<) .

In case of unknown variance, we use the estimator �̂2 = �̂2
(<? ), where

<? = J1, ?K is the model taking into account all the regressors.
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9.6.2.5 The AIC and BIC Criteria

Mallows’ �? criterion is based on the attempt to minimize the distance
between < and the true model in the sense of a quadratic risk. The AIC
(Akaike Information Criterion) and BIC (Bayesian Information Criterion)
criteria are constructed to minimize the Kullback-Leibler divergence
between the two models.

Definition 9.3 (Kullback-Leibler) Let � and � be two probability measures
dominated by the same measure (in our case the Lebesgue measure). The
Kullback divergence between these two measures is given by:

 !(�|�) = E�
[
log

d�
d�

]
.

First, note the non-symmetry of  !(·, ·). This is why we prefer to speak
of divergence rather than distance. However, this divergence verifies,
like any “classical” distance, the following properties:

I  !(�|�) > 0 for any measure � and �,
I  !(�|�) = 0 if and only if � = �.

Convexity arguments can prove these properties.

Akaike Information Criterion. More precisely, AIC is founded in
information theory. Let us consider two candidate modelsn <̂1 and <̂2,
to estimate <∗. If we knew <∗, we could find the information lost by
using <̂1 to represent <∗ by computing the Kullback-Leibler divergence,
 !(<∗ |<̂1); similarly, computing  !(<∗ |<̂2) allows us to quantify the
information lost by using <̂1 to represent <∗. We would then choose the
best model byminimizing the lost information. However, this calculation
is inaccessible because, by nature, <∗ is unknown. On the other hand,
Akaike has shown that it is possible to estimate whether using <̂1 rather
than <̂2 leads to a more or less critical loss of information [10, 11]. The
criterion developed by Akaike for this purpose writes

���(<) = −2 logℒmax
(<) + 2|< | and <̂��� ∈ argmin

<∈ℳ
���(<) ,

where ℒmax
(<) is the maximum value of the likelihood function for the

model <.

Wewill not present here the theoretical construction of this AIC criterion.
However, the proof is available in [13], for instance.

Note that AIC tells nothing about the absolute quality of a model, only
the quality relative to other models. Thus, if all the candidate models fit
poorly, AIC will not give any warning of that. Hence, after selecting a
model via AIC, it is usually good practice to validate the absolute quality
of the model.

Moreover, the proposed estimate is only asymptotically valid. Also, if
the number of data points is small, there is a substantial probability
that AIC will select models with too many parameters, i. e. that AIC will
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overfit. To address such potential overfitting, AICc was developed: AIC
with a correction for small sample sizes, namely

���2(<) = ��� + = = + |< | − 1
= − |< | − 3

.

Bayesian Information Criterion. The BIC criterion introduced by
Schwarz [12], extends the general writing of the AIC criterion using the
Bayesian viewpoint. The unknown parameter is no longer considered
as a vector but as a random variable. An a priori law is then applied to
estimate the “parameter”. The approach then consists in trying to exploit
this information for estimation. This approach theoretically brings more
richness since the range of possible solutions is extended.

In concrete terms, we obtain a criterion really similar to the AIC formula
but with a different penalty for the number of parameters. With AIC, the
penalty is 2|< |, while with BIC, the penalty is |< | log(=). This approach
leads to the BIC criterion defined by:

���(<) = −2 logℒmax
(<) +2|< | log(=) and <̂��� ∈ argmin

<∈ℳ
���(<) ,

where ℒmax
(<) is the maximum value of the likelihood function for the

model <.

9.6.3 Variable Selection Algorithms

In practice, once amodel selection criterion has been chosen, determining
the “best” model by an exhaustive search is impossible because of the
number of models to be explored. Therefore, we resort to step-by-step
methods.

9.6.3.1 Top-Down/Backward Methods

We start from the model using the ? explanatory variables, and we look,
at each step of the algorithm, for the most relevant variable to delete
according to the chosen criterion.We iterate the algorithm until we reach
the empty set. Among the variables visited during the algorithm, the
best one is selected according to the criterion.

Some algorithms stop when a given threshold is reached.

# Initialization: <[0] = J1, ?K.

# Iteration t:

Step 1: For all 9 ∈ <[t], compute 2 9 = CRIT
(
<[t]\{ 9}

)
;

Step 2: 9̂ = argmin
9∈<[t]

2 9 ;

Step 3: <[t+1] = <[t]\{ 9̂}
I If <[t+1] ≠ ∅, we go back to step 1,
I Else, STOP.
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9.6.3.2 Bottom-Up/Forward Methods

We start with an empty set of variables, and we look, at each step of
the algorithm, for the most relevant variable to add according to the
chosen criterion. We iterate the algorithm until all the variables are
integrated. Among the variables visited during the algorithm, the best
one is selected according to the criterion.

As before, some algorithms stop when a given threshold is reached.

# Initialization: <[0] = ∅.

# Iteration t:

Step 1: For all 9 ∈ J1, ?K \ <[t],
compute 2 9 = CRIT

(
<[t] ∪ { 9}

)
;

Step 2: 9̂ = argmin
9∈<[t]

2 9 ;

Step 3: <[t+1] = <[t] ∪ { 9̂}
I If <[t+1] ≠ J1, ?K, we go back to step 1,
I Else, STOP.

9.6.3.3 Stepwise Methods

From a given model, one selects a new variable (as for a bottom-up
method). Then, one tries to eliminate one of the variables from themodel
(as for a top-down method), and so on. It is necessary to define for such
a method an input and an output criterion.

We can also quote the method of the “B best subsets”: We search exhaus-
tively among all the subsets of B variables, the B best, in the sense of the
considered criterion.

9.6.4 Back to our Dataset

In this section, we will illustrate in our example some variable selection
strategies. Thanks to the regsubsets function, we can set up a bottom-
up, top-down, or stepwisemethod.We can also choose a criterion among
Mallows’ �? , the adjusted '2, and the BIC criterion. We can also use the
stepAIC function.

> library(leaps)

> select_bwd = regsubsets(Y~.,data=Data,nbest=1,nvmax=10,

method="backward")

> summary(select_bwd)

Subset selection object

Call: regsubsets.formula(Y ~ ., data = Data, nbest = 1,

nvmax = 10, method = "backward")

10 Variables (and intercept)

Forced in Forced out

X1 FALSE FALSE
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Figure 9.4: From top to bottom: result of
the variable selection process with the
Mallows’ �? criterion, the BIC criterion
and the adjusted '2.

X2 FALSE FALSE

X3 FALSE FALSE

X4 FALSE FALSE

X5 FALSE FALSE

X6 FALSE FALSE

X7 FALSE FALSE

X8 FALSE FALSE

X9 FALSE FALSE

X10 FALSE FALSE

1 subsets of each size up to 10

Selection Algorithm: backward

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 ( 1 ) " " " " " " " " " " "*" " " " " " " " "

2 ( 1 ) "*" " " " " " " " " "*" " " " " " " " "

3 ( 1 ) "*" " " " " " " " " "*" "*" " " " " " "

4 ( 1 ) "*" " " " " " " " " "*" "*" " " "*" " "

5 ( 1 ) "*" " " " " " " " " "*" "*" " " "*" "*"

6 ( 1 ) "*" " " " " " " " " "*" "*" "*" "*" "*"

7 ( 1 ) "*" " " "*" " " " " "*" "*" "*" "*" "*"

8 ( 1 ) "*" " " "*" "*" " " "*" "*" "*" "*" "*"

9 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" "*" "*"

10 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

Similar results are obtained if we execute the command

select_fwd = regsubsets(Y~.,data=Data,nbest=1,nvmax=10,

method="forward")

on the second line.

In the above code, nvmax corresponds to the maximum number of
predictors to incorporate in the model. For example, if nvmax = 10, as is
the case here, the function will return up to the best 10-variables model,
that is: the best 1-variable model, the best 2-variables model, etc.

The function summary reports the best variables for each model size.
From the output above, an asterisk specifies that a given variable is
included in the corresponding model. For example, it can be seen that
the best 2-variables model contains only -1 and -6: “. ∼ -1 + -6”. The
best 3-variables model is “. ∼ -1 + -6 + -7”, and so forth. A natural
question then arises: which of these best models should we ultimately
choose for our predictive analysis?

To answer this question, we will review the BIC, Mallows’ �? criteria,
and the adjusted '2. To do this, we can look at the graphical tables of
best subsets given by regsubsets. Figure Figure 9.4 displays, for each
criterion, a table of models showing which variables are in each model.
In addition, the models are ranked by the specified model selection
statistic. Thus, the model in the first row is the optimal model for the
corresponding criterion.

We can also search for the value of the optimal criterion, and refer to the
diagram of the different models to read the optimal model.
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> res = summary(select_bwd)

> str(data.frame(AdjR2 = which.max(res$adjr2),

+ Cp = which.min(res$cp),

+ BIC = which.min(res$bic)))

’data.frame’: 1 obs. of 3 variables:

$ AdjR2: int 7

$ Cp : int 5

$ BIC : int 5

Finally, in our example, with the Mallows’ �? and the BIC criteria, we
retain the model composed of the variables -1, -6, -7, -9, and -10. The
test of the sub-model confirms that this sub-model is sufficient to explain
the variable .. We obtain the same result with the AIC criterion. See the
(long) output just after.

> reg.fin = lm(Y~X1 + X6 + X7 + X9 + X10, data=Data)

> anova(reg.fin,reg)

Analysis of Variance Table

Model 1: Y ~ X1 + X6 + X7 + X9 + X10

Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Res.Df RSS Df Sum of Sq F Pr(>F)

1 16 73.955

2 11 57.524 5 16.432 0.6284 0.6822

With the adjusted '2, the selected model contains more variables, as
expected. Namely: -1, -3, -6, -7, -8, -9, and -10.

> library(MASS)

> modselect_aic = stepAIC(reg,trace=TRUE,direction=c("backward")

)

Start: AIC=43.15

Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC

- X5 1 0.078 57.602 41.175

- X2 1 0.534 58.058 41.349

- X4 1 2.338 59.861 42.022

- X3 1 3.668 61.192 42.505

- X9 1 4.963 62.486 42.966

<none> 57.524 43.145

- X8 1 6.110 63.634 43.366

- X10 1 16.348 73.871 46.648

- X1 1 22.726 80.250 48.470

- X7 1 31.085 88.608 50.650

- X6 1 168.627 226.150 71.263

Step: AIC=41.18

Y ~ X1 + X2 + X3 + X4 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC

- X2 1 0.586 58.188 39.398

- X4 1 2.367 59.969 40.061

- X3 1 4.689 62.291 40.897

<none> 57.602 41.175

- X8 1 6.426 64.028 41.502
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- X9 1 6.538 64.140 41.541

- X10 1 18.606 76.208 45.333

- X1 1 33.697 91.299 49.308

- X7 1 36.863 94.465 50.058

- X6 1 174.761 232.363 69.860

Step: AIC=39.4

Y ~ X1 + X3 + X4 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC

- X4 1 1.785 59.974 38.063

<none> 58.188 39.398

- X9 1 6.278 64.467 39.652

- X3 1 6.529 64.718 39.738

- X8 1 7.253 65.441 39.982

- X10 1 18.143 76.331 43.369

- X1 1 41.943 100.132 49.340

- X7 1 47.012 105.201 50.426

- X6 1 174.827 233.016 67.921

Step: AIC=38.06

Y ~ X1 + X3 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC

- X3 1 4.748 64.722 37.739

<none> 59.974 38.063

- X9 1 7.028 67.002 38.501

- X8 1 10.607 70.581 39.646

- X10 1 17.091 77.065 41.579

- X1 1 43.614 103.588 48.086

- X7 1 46.538 106.512 48.699

- X6 1 178.038 238.011 66.388

Step: AIC=37.74

Y ~ X1 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC

<none> 64.722 37.739

- X8 1 9.233 73.955 38.673

- X10 1 12.772 77.494 39.701

- X9 1 15.559 80.281 40.479

- X7 1 42.815 107.538 46.910

- X1 1 59.005 123.727 49.995

- X6 1 196.988 261.710 66.476

9.7 Validation of the Model

Once the model has been implemented, the “statistical soundness” of
this model must be checked a posteriori regarding the normality of the
residuals, the adequacy of the fitted value .̂8 to the observed value .8 .
We can also ensure that there are no outliers.
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Figure 9.5: Graphical post control: Points
H8 , Ĥ8) for the example in simple (left) and
multiple (right) linear regression.

9.7.1 Graphical Post Control

As a first step, a simple but effective technique consists in using a
graphical control to empirically test the four basic postulates (at least
the assumptions (A1− 3), since the (H4) one is not so important as soon
as sufficient data are available).

A first check we can make is to observe the graph of the = points (H8 , Ĥ8).
This graph is indeed very informative: if the points are aligned along
the first bisector (see Figure 9.5), we can think that the linear regression
model fits our situation.

In simple linear regression, the graphical comparison between the scat-
terplot (G8 , H8) and the ordinary least squares regression line of . by G
gives almost exhaustive information (see Figure 9.2).
On this graph, if one observes a curvature of the “true” regression curve
of ., we can think that the model is inadequate and does not allow for
testing assumption (A1).

However, in the case of multiple regression, this type of graph cannot be
used because of the multiplicity of regressors. We must therefore check
the different hypotheses one by one on the �8 error terms. These �8 are
unfortunately unobservable. Hence, we will use their natural predictors,
namely the residuals �̂8 = .8 − .̂8 .

Therefore, in the following paragraphs, we present several approaches
to ensure the legitimacy of the conclusions, and adequate procedures
for any multiple linear regression. These techniques are mainly based
on the (graphical) analysis of the residuals. More precisely, we try to
verify that the estimated residuals �̂8 = .8 − -8 �̂ behave in accordance
with the model’s hypotheses, i. e. that they have a random behavior close
to iid random variables of Gaussian distribution.

9.7.2 (A1− 2) Goodness of Fit & Homoscedasticity

The most classical graph used to check the adequacy of the model and
the homoscedasticity is the graph of the residuals versus the fitted

Figure 9.6: Diagnostics for the simple lin-
ear regression example
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Figure 9.7: Diagnostics for the multiple
linear regression example

Figure 9.8: Residuals vs Fitted values: Ba-
nana shape

Figure 9.9: Residuals vs Fitted values: Trum-
pet shape

values (.̂8)8 . This graph should be done almost systematically. For an
illustration, see the graph at the top left of Figure 9.6 and Figure 9.7.

This amounts to plotting the coordinates of vector %[-]⊥. as a function of
those of vector %[-].. According to the Cochran theorem, if we meet the
four assumptions (A1− 4), these two vectors are independent since they
are centered and Gaussian. Therefore, we seek to visually validate the
independence and the Gaussianity of the two vectors. However, from the
graph alone, we can only see the possible deficiency of the assumptions
(A1) and (A2). Practically speaking, if we see nothing notable on the
graph, that is, if we observe a cloud of points centered and aligned in
any way, this is a very good sign: The residuals do not seem to have any
interesting property, and this is what we are asking for the error.

Roughly speaking two main pathological patterns can be detected.

I The first one is “banana shape” as in Figure 9.8.
In this case, we can think that the model does not fit the data.
Indeed, there does not seem to be any independence between the
�̂8 and the .̂8 . Therefore, it is necessary to improve the analysis of
the problem to propose other relevant regressors or to transform
the regressors G(9) by a function of type (log, sin).

I The other typical pathological pattern is the “trumpet shape” as in
Figure 9.9.
In this example, there is strong evidence that the variance is not
homogenous. One possibility is to set up a change of variable for.
to “make” the variance of the noise constant (see next paragraph).

Can we transform the model ?

I We can freely transform the regressors using every possible al-
gebraic transformation: power, square root, exponential circular
functions, logarithmic functions,etc., as soon as the resulting re-
gression formula remains interpretable. This technique is adapted
to residual plots of the first kind (“banana”) and can improve the
adequacy of the model or reduce its number of terms if we then
use a model selection procedure.
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Relationship Domain for . Transformation

� = (2BC4).: , : ≠ 1 R∗+ . ↦→ .1−:

� = (2BC4)
√
. R∗+ . ↦→

√
.

� = (2BC4). R∗+ . ↦→ log(.)
� = (2BC4).2 R∗+ . ↦→ .−1

� = (2BC4)
√
.(1 − .) [0, 1] . ↦→ arcsin(

√
.)

� = (2BC4)
√

1 − ..−1 [0, 1] . ↦→
√

1 − . − 1
3 (1 − .)

2/3

� = (2BC4)(1 − .)−2 [−1, 1] . ↦→ log(1 + .) − log(1 − .)

Table 9.1: Change of variable for the vari-
able to be explained to destabilize the
variance of .

Figure 9.10: Residuals vs Time or order

I On the other hand,we can only consider transforming the response
. if the residual plot shows some evidence of heteroscedasticity.
The linear model assumes that the absolute error is constant, i. e.
independent of the amplitude of the response. In many cases, the
error is proportional to the response: the larger the response, the
larger the error. In such a case, a logarithmic transform of the
response will fix the problem. A list of the transformations to be
used is given in Table 9.1, depending on the relation between the
mean response and the standard error. A more rigorous but much
more complex alternative is to use a generalized linear model
with an all-chosen link function; see [20] for example. We will
study some elementary generalized models in the third part of
this course.
Note that these transformations are based on Taylor expansion
and are valid for rather large data. In the other cases, generalized
linear models are necessary.

9.7.3 (A3) Independence

A relevant graph to ensure the independence of the errors between them
is the scatterplot of the residuals �̂8 as a function of the order of the
data (when the latter makes sense, especially if it represents time). An
example is given in Figure 9.10. Such a graph is potentially suspicious if
the residuals remain in packets on one side or the other of 0. One can
confirm these doubts by performing a runs test (cf [18], p. 157). This test
is based on the number of runs, i. e., the number of consecutive residue
packets of the same sign.

On the other hand, if the errors are correlated under certain conditions,
a classical approach is to use an ARMAmodel. The resulting model of
regression with ARMA errors is called ARMAX [19, 21–23]. Last, there
are also correction methods such as generalized or pseudo-generalized
least squares estimates, see [19] or others.

9.7.4 (H4) Gaussianity

For the Fisher and Student tests to be significant, checking whether the
Gaussianity hypothesis is acceptable may be interesting. For this, we
strongly advise against the classical non-parametric tests of Kolmogorov-
Smirnov and Shapiro-Wilk seen in Section 3.4 because they would be
applied on residuals that are (almost) never independent. We prefer to
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Figure 9.11: Outlier detection: Bar graph of
the diagonal terms of the hat matrix �
(top) and Cook’s distances (bottom). Note
the similarity between these two graphs.

“settle” for a graphical verification based on a QQ-plot (see the graphs in
the upper middle of Figure 9.8 and Figure 9.9).

For the record, this graph connects the points of R2 formed by the
empirical quantiles of the studentized residuals (i. e. the �̂8 divided
by their empirical standard deviation) as a function of the theoretical
quantiles (for probabilities :/= + 1 where : ∈ J1, =K, = being the number
of data) of a centered reduced normal distribution. Since Student’s law
strongly looks like a Gaussian distribution as soon as the parameter
exceeds ten, if the errors (�8) are Gaussian, i. e. under (H4), then this
QQ-plot is a bisector of the plane.

This type of graph mainly allows us to see if a “heavy tail” distribution
would not be more appropriate (in this case, the points move away from
Henri’s line at its extremities).

9.7.5 Outlier Detection

Finally, we will describe two methods to detect “outlier” data.

9.7.5.1 Hat Matrix and Leverage

Let the hat matrix � = -(C--)−1 C-. Then,

.̂8 = (-�̂)8 = (�.)8 = �88.8 +
∑
9≠8

�8 9.9

gives the prediction for the 8-th individual. In particular, if �88 = 1, then
.̂8 is entirely determined by the 8-th observation. On the contrary, if
�88 = 0, the 8-th observation does not influence .̂8 .

Thus, to measure the influence of an observation on its own estimate,
one can examine the bar chart of the diagonal terms of � (see Figure
9.11). In other words, the hat matrix� provides a measure of leverage. In
practice, one declares the 8-th observation to be leveraged if �88 exceeds
2:/= or 3:/=.

9.7.5.2 Cook’s Distances

The influential points are those points that, if removed from the study,
will significantly alter the estimate of the model coefficients. The most
classical measure of influence is the Cook’s distance. It is a distance
between the coefficient estimated with all observations and the one
estimated by removing one observation. The Cook’s distance for the 8-th
observation is defined by

38� =
C(�̂ − �̂(−8)) C))(�̂ − �̂(−8)) ,

where ) is the vector of studentized residuals, and �̂(−8) is the estimator
of the maximum likelihood without observation 8. Here again, the bar
graph of the 38

�
can be drawn (see Figure 9.11). A point will be considered
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influential if its distance is larger than the others. We must then try to
understand why it is influential: Is it a lever, an outlier, or both, . . . ?





Figure 10.1: Curse of dimensionality:
Pairwise-distances between = = 100
points sampled uniformly in the hyper-
cube [0, 1]3 , for 3 = 2, 10, 100, and 1000.
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10.1 Curse of Dimensionality

The sustained development of technology, data storage, and computing
resources results in the production, storage, and processing of an expo-
nentially growing volume of data. Data is ubiquitous and hugely impacts
almost every branch of human endeavor, including science, medicine,
business, finance, and government. For example, large-scale data allows
us to understand the regulatory mechanisms of living organisms better,
create new therapies, monitor climate and biodiversity changes, opti-
mize resources in the health sector, optimize resources in industry and
government, and customize the marketing for each consumer, etc.

A major characteristic of modern data is that it often simultaneously
records thousands, or evenmillions, of features on each object or individual.
Such data are said to be high-dimensional.

Simultaneously detecting thousands of variables on each “individual”
seems good news: Potentially, we could analyze all the variables likely
to influence the studied phenomenon. Unfortunately, statistical real-
ity clashes with this optimistic statement: Separating the signal from
the noise is usually almost impossible in high-dimensional data. This
phenomenon is often called the “curse of dimensionality”.

10.1.1 High-Dimensional Geometry

The impact of high dimensionality on statistics is multiple:

1. High-dimensional spaces are broad, and data points are isolated
in their vastness;

2. The accumulation of small fluctuations inmanydifferent directions
can produce a huge overall fluctuation;

3. An event that is an accumulation of rare events may not be rare;
4. Finally, numerical computations andoptimizations inhigh-dimensional

spaces can be excessively intensive.

In particular, as the dimension increases, the notion of “nearest points”
vanishes. To illustrate this phenomenon, we plot in Figure 10.1 the
histograms and boxplots of the distribution of the pairwise-distances
{‖G(8) − G(9)‖2 : 1 6 8 < 9 6 =} for = = 100 and dimensions 3 = 2, 10,
100, 1000. When the dimension increases, we observe that

I the minimal distance between two points increases,
I all the points are at a similar distance from the others, so the notion

of “nearest points” vanishes.
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Figure 10.2: Curse of dimensionality: Vol-
ume (left) and fraction in the crust (right)
of a unit sphere according to the dimen-
sion of the ambient space.
We observe that for 3 = 20, the volume of
the unit ball is already almost 0.

In particular, any estimator based on a local averaging will fail with such
data.

More generally, our intuition about space is based on two and three
dimensions and can often bemisleading in high dimensions. To illustrate
this phenomenon, we will look at the hypersphere for the norm 2 in any
dimension

The volume +3(A) of a 3-dimensional ball of radius A ∈ R+ is equal to

+3(A) =
√
�
3

Γ

(
3
2 + 1

) A3 ∼
3→+∞

(
2� e A2

3

) 3/2 1√
3�

,

where Γ represents the Gamma function Γ(G) =
∫ +∞

0 CG−1 e−C dC for
G ∈ R+.

As a consequence,

∀A ∈ R+ , lim
3→+∞

+3(A) = 0 .

In words, the volume of the 3-dimensional sphere with radius goes
(very quickly) to 0 as the dimension 3 increases to infinity, see Figure
10.2 (left). That means a (unit) sphere in high dimensions has almost no
volume (compare this to the volume of the unit cube, which is always
1).

Let us consider the volume of the “crust” �3(A) obtained by removing
from the 3-dimensional ball with radius A the sub-ball of radius 0.99A.
Hence,

∀A ∈ R+ , �3(A)
+3(A)

= 1 − .993 ,

which goes exponentially fast to 1. That is, “most” of the volume of
the 3-dimensional sphere is contained in its “crust”. More visually:
almost nothing will be left while peeling a high-dimensional orange
since almost all of its mass is in its peel. We plot in Figure 10.2 (right)
the proportion of points of the ball located in the crust.

The moral of this example is that we have to be careful with our
geometric intuitions in high-dimensional spaces: These spaces have
some counterintuitive geometric properties.

10.2 Regularized Linear Regression

Whenwe endupwith a singularmodel, A:(-) < :, theGrammatrix C--
is no longer invertible and even ill-conditioned (most of the eigenvalues
are 0). This case arises when

I our model has more explanatory variables than observations:
? > =;

I = > ? but some variables are linearly redundant, i. e. the family
{-(1) , . . . , -(?)} is linearly dependent.
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Figure 10.3: Bias-variance trade-off & Oc-
cam’s razor: A high bias or underfitting
means that the model cannot capture the
trend or pattern in the data. It is usually
caused when the hypothesis function is
too simple or lacks features. On the con-
trary, high variance or overfitting means
that the model fits the available data but
does not generalize well to predict new
data. This typically occurs when the hy-
pothesis function is too complex and tries
to perfectly fit every data point on the
training data set, resulting in unneces-
sary curves and angles unrelated to data.
Increasing the bias can decrease the vari-
ance, whereas increasing the variance can
decrease the bias. How can we reach the
perfect or optimal point for a goodmodel?
Credit(Picture): Eduard Bonada

Figure 10.4: Graphical representation of the
quality of an estimator: predicted values
represented on a target centered on the
value to be estimated for different bias/-
variance situations.
Credit(Picture): Sebastian Raschka

In this situation, we have seen previously that the least-squares estimator
�̂ does not exist. The projection .̂ = %[-]. of the response . onto
ℐ<(-) = [-] does not have a unique decomposition on the columns of
- (the model is unidentifiable). Moreover, since the variance-covariance
matrix of �̂ is �2(C--)−1, the precision of the �̂ estimator decreases
when C-- approaches a non-invertible matrix. In other words, the
standard linear model completely fails, and a new high-dimensional
specific linear regression framework must be developed.

Example 10.1 DNA microarrays measure the transcription level of
tens of thousands of genes simultaneously. We are typically in a
situation where ? (the number of genes) will be significantly greater
than the number of samples = (the number of genomes studied).

10.2.1 Important Balance : Bias-Variance Trade-Off

From a prediction perspective, if G∗ is a new vector of values of the
explanatory variables, we know that the quality (in the sense of squared
deviations) of the prediction .̂∗ of the true response .∗ is decomposed
into the squared bias + the variance. Or said more precisely, for any
estimator �̂ of �,

E
[
(. − -�̂)2

]
= ℬ80B

[
-�̂

]
+V0A

[
-�̂

]
+ �2 ,

where

ℬ80B
[
-�̂

]
= E

[
-�̂

]
− -� & V0A

[
-�̂

]
= E

[ (
-�̂ − E[-�̂]

)2
]
.

Thus, to improve the prediction, one may prefer a slight increase in
the bias to induce a decrease in the variance. Figure 10.3 illustrates this
need to make a trade-off between bias and variance. Figure 10.4 gives
an intuition on the influence of bias and variance on the quality of the
estimate.

In this context, we will try to use so-called regularized, or penalized,
regression methods to overcome these difficulties. Their common for-
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Figure 10.5:Geometrical interpretation: Con-
tours of the error and constraint func-
tion for the ridge regression. The solid
orange areas are the constraint regres-
sions, while the blue ellipses are the con-
tours of the residual sum of squares (RSS).
The Ridge estimates can be viewed as the
point where the linear regression coeffi-
cient contours intersect the circle defined
by �2

1 + �
2
2 6 A(�).

malism is the optimization of a criterion of the form

argmin
�∈R:

‖. − -�‖2 + �pen(�) ,

where � ∈ R+ is a tuning parameter. They differ in the form of the
penalty function pen(�), which will involve monitoring a norm of �.

In practice, we start by centering and reducing the explanatory variables
G(9) not to penalize or favor a � coefficient. Indeed, as mentioned before,
the penalties that we will consider rely on using a judicious norm of �.
Therefore, wewant to affect each coefficient in a “similar”way.Wedenote
-̃ the matrix of centered-reduced explanatory variables. Moreover, since
the intercept �0 has a particular role in positioning the model around
the mean behavior of ., it does not have to be involved in the constraint
on the norm of �. Hence, we center the response vector ., .̃ = . − .̄1= ,
and we can potentially reduce it. Note that the model is then of the
form

.̃ = -̃� , where � = C(�1 , . . . , �?) ,

i. e. : = ?, and without intercept.

Therefore, after the initial data transformation, we focus on regularized
regression methods that seek to minimize the regularized empirical risk
(for squared loss):

argmin
�∈R:

‖.̃ − -̃�‖2 + � ‖�‖@@ , where ‖�‖@@ =
?∑
9=1
(�9)@ ,

We speak of ridge regression when @ = 2 and Lasso regression when
@ = 1. We will detail these two methods and the Elasticnet regression
that combines the first two. To illustrate this section, we use the dataset
introduced in the previous chapter, mensurations.txt, to which we
have added 10 noise variables simulated according to a (0, 1) distribu-
tion. The resulting dataset, available on the moodle page of the course,
is called mensurations_extended.txt.

10.2.2 Ridge Regression

In the context presented above, the difficulty comes from the non-
invertibility of C--. This matrix being positive semi-definite, all its
eigenvalues are positive. If C-- is not invertible, then at least one of its
eigenvalues is zero. Let �1 > �2 > . . . > �? be its ordered eigenvalues.

Proposition 10.1 Let � ∈ R+. The matrices C -̃-̃ and C -̃-̃ + ��? have the
same eigenvectors, but their eigenvalues are {� 9} 9∈J1,?K and {� 9 + �} 9∈J1,?K
respectively.
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In particular, if � > 0,D4C(C -̃-̃ +��?) > D4C(C -̃-̃) and C -̃-̃ +��? has
“more chance” of being invertible than C -̃-̃. Therefore, the idea is to
replace

(
C -̃-̃

)−1 in the expression for the least-squares estimator �̂ with(
C -̃-̃ + ��?

)−1. Hence, the ridge estimator is given by

�̂ridge =
(
C -̃-̃ + ��?

)−1 C -̃.̃ .

In particular, this ridge estimator is a solution to the optimization
problem

�̂ridge ∈ argmin
�∈R?

.̃ − -̃�2
2 + �‖�‖

2
2 ,

or also a solution to the constrained minimization problem :

�̂ridge ∈ argmin
�∈R?

.̃ − -̃�2
2 under the constraint ‖�‖22 6 A(�) ,

where A is a bĳective function. The ridge regression keeps all the variables,
but the constraint ‖�‖22 6 A(�) prevents the estimators from taking too
large values and thus limits the variance of the predictions. The estimator
is said to shrink the estimated coefficients towards zero: the range of
possible estimated parameter values is reduced.

Proposition 10.2 The ridge estimator �̂ridge(�) =
(
C -̃-̃ + ��?

)−1 C -̃.̃

1. is biased
E

[
�̂ridge

]
= � − �

(
C -̃-̃ + ��?

)−1
� ;

2. has a smaller variance than the vanilla estimator �̂:

V0A
(
�̂ridge

)
= �2 ( C -̃-̃ + ��? )−1(C -̃-̃)

(
C -̃-̃ + ��?

)−1

6 �2 ( C -̃-̃ )−1
=V0A

(
�̂
)
.

We define the fitted values for . by

.̂ridge = -̃�̂ridge(�) + .̄1= .

The tuning parameter � ∈ R+ controls the strength of the penalty term.
Note that:

I When � = 0, we get the linear regression estimate �̂,
I When �→ +∞, then �̂ridge → 0,
I For � in between, we are balancing two ideas: fitting a linear model

of .̃ on -̃, and shrinking the coefficients.

The quality of the estimator �̂ridge depends on the choice of �, which,
according to Proposition 10.2, behaves as follows:

I The bias increases as the amount of shrinkage � increases,
I The variance decreases as the amount of shrinkage � increases.

Therefore, we need to find the� thatmakes the best compromise between
bias and variance. This choice is a delicate point; worse, it is almost
impossible to make this choice a priori. If we plot the regularization
path of the ridge regression (Figure 10.6), we see that it is continuous,
which does not allow an easy adjustment of �. A first solution is to
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Figure 10.6: Regularization paths for
the ridge regression: Functions � ↦→(
�̂ridge(�)

)
9 for all variable 9 ∈ J1, 20K

Figure 10.7: � selection by cross-validation
for ridge regression: Mean square error as a
function of�. Byminimizing this function,
we obtain the optimal value of �, in this
case �∗ = 0.38.

follow the recommendations proposed in the literature, see [8, 14–16]
for example.

Practical Choice of the Regularization Parameter

In practice, there are two ways to approach this question. A more
traditional approach consists of choosing � so that a specific information
criterion, AIC or BIC most of the time, is the smallest. Warning: The
number of degrees of freedom in the ridge regression differs from that
of the ordinary least squares approach!

Amoremachine learning-like approach is to perform cross-validation and
select the value of � that minimizes the cross-validated sum of squared
residual or some other measure (Figure 10.7). We first partition the
data into a training set (.̃train , -̃ train) and a test set (.̃test , -̃ test). We then
estimate the ridge regression on the training set for each value of � in a
chosen grid and predict the response on the test set. We then measure
the quality of the induced model by comparing the predicted values
.̂test
ridge(�) = -̃ test�̂ridge(�) and the real data .̃test. We can, for example,

use the predicted residual sum of squares (PRESS) criterion

%'�(( (�) = ‖.̃test − .̂test
ridge(�)‖

2 .

Finally, we choose the value � so that it minimizes this criterion. In our
case, we find for example that �∗ = 0.38.

The principle of cross-validation is to repeat this split between test
and training several times and consider the average of each obtained
criterion.

Limit of the Ridge Regression

One may question the validity and usefulness of ridge regression when
none of the true coefficients are small, that is,when all the true coefficients
are medium or large. Perhaps surprisingly, ridge regression is still valid.
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Figure 10.8:Geometrical interpretation: Con-
tours of the error and constraint function
for the lasso regression. The point where
the ellipses intersect the bounding box
give us the lasso estimates. Note that the
intersection is at a corner, so the coeffi-
cient �1 in this case is set to zero.

Nevertheless, its advantage is less spectacular here. Moreover, the
corresponding range of good lambda values is narrower.

On the contrary, suppose there is a subgroup of real coefficients iden-
tically zero. In other words, assume that the average result does not
depend on a subset of predictors. We would like to detect these extrane-
ous predictors and remove them (at least virtually) from our predictor
set. More generally, we refer to variable selection when our goal is to
select relevant variables from a broader set. In addition to predictive
accuracy, this can be very important for model interpretation.

So how does ridge regression behave if a group of real coefficients is
exactly zero? The answer depends on whether one is interested in pre-
diction or interpretation. Ridge regression will reduce the components
of its estimate to zero but will never set those components to zero (unless
� = 0, but in that case, all features are zero). Thus, the answer will be
none other than the one corresponding to this subgroup of small but
non-zero coefficients. In terms of prediction, this does not pose much of
a problem. However, ridge regression is not as informative as we would
like for interpretive purposes.

Strictly speaking, ridge regression does not perform variable selection.

10.2.3 Sparsity: The Lasso Regression

The idea of the LASSO (LeastAbsolute Selection and ShrinkageOperator)
regression proposed by Tibshirani [17] is to cancel some coefficients
of the vector � to have a sparse estimator. This leads to the selection
of variables leading to a more interpretable model and a matrix of
explanatory variables with better properties than C--.

Example 10.2 In many applications, ? >> = but many extracted
features in - are irrelevant. Suppose we want to study the size of a
tumor .. It seems reasonable to assume that it can be expressed as a
linear combination of the genetic information of the genome described
in -. However, most components of - will be zero; most genes will
be irrelevant to predict ..

To force the cancellation of theta coordinates, we constrain its ℓ1 norm:
‖�‖1 =

∑?

9=1 |�9 |. As in ridge regression, the first step is to center-reduce
the explanatory variables (- → -̃) and at least center the response
vector (. → .̃). Therefore, we define the LASSO estimator: For all
� ∈ R∗+,

�̂lasso ∈ argmin
�∈R?

.̃ − -̃�2
2 + �‖�‖1 . (10.1)

This minimization problem is equivalent to minimize ‖.̃ − -̃�‖22 under
the constraint ‖�‖1 6 A(�), where A is a bĳective function. The solution
of problem (10.1) may not be unique since the above criterion is not
strongly convex. However, the resulting vector of fitted values -̃�̂lasso(�)
is always unique.

We have similar behavior to the ridge regression as a function of the
penalty parameter �:
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Figure 10.9: � selection by cross-validation
for lasso regression: Mean square error as a
function of�. Byminimizing this function,
we obtain the optimal value of �, in this
case �∗ = 0.24.

I When � = 0, we get the linear regression estimate �̂,
I A large � leads to a very sparse solution: lim�→+∞ �̂lasso(�) = 0,
I The parameter � must be chosen as judiciously as this choice is

tricky and impossible to realize a priori.

As with the ridge regression, we can plot the regularization path of
the Lasso regression, see Figure 10.10. And, likewise, we go through a
cross-validation procedure to stabilize the choice of �, see Figure 10.9.

Ridge vs. Lasso Regression

Neither method is unconditionally better than the other. Lasso tends
to do well if there are a small number of significant parameters and
the others are close to zero, i. e. when only a few predictors influence
the response. On the contrary, ridge regression works well if many
significant parameters share approximately the same value, i. e.when
most predictors impact the response. However, we do not know the true
parameter values in practice. So, the previous two points are somewhat
theoretical. Just run cross-validation to select the more suited model for
a specific case or. . . try to combine the two!

Figure 10.10: Regularization paths for
the lasso regression: Functions � ↦→(
�̂lasso(�)

)
9 for all variable 9 ∈ J1, 20K

10.2.4 Elastic-Net Regression

Elastic Net first emerged as a result of critique on lasso, whose variable
selection can be too dependent on data and thus unstable. The solution
is to combine the penalties of ridge regression and lasso to get the best
of both worlds. The Elastic-Net estimator [24] is defined for � > 0 ans
 > 0 by:

�̂net ∈ argmin
�∈R?

.̃ − -̃�2
2 + �

(
‖�‖1 + (1 − )‖�‖22

)
,

where  is the mixing parameter between ridge ( = 0) and lasso
( = 1). This minimization problem is equivalent to the minimization of.̃ − -̃�2

2 under the constraint ‖�‖1 + (1 − )‖�‖
2
2 6 A(�).
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Figure 10.11: Elastic-Net Regression. Two-
dimensional illustration,  = 0.5.

Figure 10.12: Geometrical interpretation:
Contours of the error and constraint func-
tion for the elastic-net regression.

Now, there are two parameters to tune: � and . In practice, this
calibration is often performed by cross-validation.

Figure Figure 10.13 shows the differences in the regularization paths of
the three methods.

Figure 10.13: Regularization path for 3 vari-
ables of the dataset for Ridge( = 0, red),
Lasso ( = 1, green) and Elastic-Net re-
gression (here  = 0.5, blue).
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Analysis of variance (ANOVA) covers a set of tests and estimation
techniques intended to assess the effect of one or more qualitative
variables on a quantitative variable. In the simplest case, it compares
several Gaussian sample means: In other words, we generalize the
classical test of equality of twomeans seen in 3MIC to the test of equality
of � > 2 means.

As in the test of equality of two means, normality and independence of
the quantitative variable are assumed, as well as equality of variances.
The particularity of ANOVA is that the ? means are supposed to come
from ? samples, each corresponding to a modality of a qualitative
character used to stratify the population.

In ANOVA, we use a particular vocabulary introduced by agronomists
who first addressed this type of problem: the qualitative variable likely
to influence the distribution of the observed quantitative response . is
called a factor, and its modalities are called levels. A factor is said to be
controlled if its values are not observed but fixed by the experimenter.

he modalities of the corresponding qualitative explanatory variable.

11.1 Experimental Design

An experimental design lists all the combinations of the different factors
considered by the experimenter. Here we give some basic definitions of
experimental design, which will be helpful for the following. We will
not discuss the theory of experimental design in this course.

Definition 11.1 (Design of Experiments) I Acell or treatment com-
binations is the the combination of the settings of several factors in
a given experimental trial. In other words, it is a cell of the table
associated with a combination of the controlled factors;

I An experimental design is said to be complete if we observe at least
one value in each cell;

I An experimental design is said to be repeated if we observe more than
one data per cell;

I A balanced design is an experimental design where all cells have the
same number of observations;

I A balanced and repeated design is said to be equirepeated.
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Table 11.1:Data to illustrate the one-factor
anova.

Examiner 8 A B C

10 8 10
11 11 13
11 11 14

Marks H8 9 12 13 14
13 14 15
15 15 16

16 16
16

Size =8 6 8 7

Mean H̄8 · 12 13 14

Figure 11.1: Boxplot of marks overall
(right) and by examiner.

11.2 One-Way Analysis of Variance

In this part, we observe a quantitative variable., which we try to explain
using a single explanatory factor. We note:

I 8 the index of the level (or “cell”) for the explanatory factor,
I � the number of levels: 8 ∈ J1, �K,
I =8 the number of experiments in the level 8,
I 9 ∈ J1, =8K the index of the experiment in the 8-th level,
I = =

∑�
8=1 =8 the total number of experiments.

An experiment or “individual” is identified by two indices: 8, the number
of the cell or level, and 9 which indexes the observation for this level.
Thus, we note .8 9 , the theoretical value of the quantitative response for
the experiment 9 in the level 8.

In this chapter, wewill illustrate the concepts discussedwith the example
presented in Table 11.1 and Figure 11.1. We are interested in the grades
obtained by students in an oral exam. Specifically, we ask about a
potential effect of the examiner on the obtained scores. Indeed, we
observe a difference of 2 points between the best average, which is 14,
and the worst, which is 12.

This data can be approached in two ways:

I We dispose of 3 independent samples and we want to compare
their averages: this is the “comparison of averages” approach.

I We observe a single sample of length 18 and one factor (the
examiner), and we study the effect of this factor on the mean: this
is the “analysis of variance” approach.

11.3 One-Way ANOVAModel

We model a quantitative variable as a function of a factor at � levels. For
each level 8 ∈ J1, �K of the factor, we observe =8 repeated measurements
of ., denoted H8 9 , where 9 ∈ J1, =8K. We make the following assumptions
of normality and independence:

1. For all 8 ∈ J1, �K and 9 ∈ J1, =8K, H8 9 is a realization of a random
variable .8 9 of law(<8 , �2);

2. The random variables .8 9 are globally independent.

These assumptions can be summarized by writing the model:

∀8 ∈ J1, �K , ∀9 ∈ J1, =8K, .8 9 = <8 + �8 9 ,

where �8 9
8.8.3∼ (0, �2) .

(ℳ★
�
)

In other words, we describe the effect of the factor by assuming:

I a specific expectation <8 for each group or level of the factor,
I and an intra-group variance �2 common to all groups.
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The purpose of this study will be to know whether, given the data
(from Table 11.1, for example), the means of the � samples are equal
or different. In other words, we want to know whether the observed
empirical average H̄8 · differ because of actual differences between the
means <8 or whether these differences can reasonably be attributed to
sampling fluctuations alone.

Note that we can rewrite this model in matrix form by setting:

©«

.1,1
...

.1=1

.21
...

.�=�

ª®®®®®®®®®¬
=

©«
1=1 0=1 . . . 0=1

0=2 1=2 . . . 0=2
...

...
. . .

...

0=� 0=� · · · 1=�

ª®®®®¬︸                      ︷︷                      ︸
-

©«
<1
<2
...

<�

ª®®®®¬︸︷︷︸
�

+� , where � ∼=(0= , �2�=) .

With the R software, we use the command lm(mark∼exam-1).
We can also visualize the design matrix - with the command
model.matrix(mark∼exam-1).

> anov_reg = lm(mark~exam-1, data=note)

> summary(anov_reg)

Call:

lm(formula = mark ~ exam - 1, data = note)

Residuals:

Min 1Q Median 3Q Max

-5 -1 0 2 3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

examA 12.0000 0.9526 12.60 2.30e-10 ***
examB 13.0000 0.8250 15.76 5.63e-12 ***
examC 14.0000 0.8819 15.88 4.98e-12 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.333 on 18 degrees of freedom

Multiple R-squared: 0.9734, Adjusted R-squared: 0.969

F-statistic: 219.7 on 3 and 18 DF, p-value: 2.311e-14

11.3.1 Decomposition of Effects

For interpretation purposes, we may be interested in a change of param-
eterization. This is a change of variables in the function to be minimized
andwhose variables are themodel’s parameters. Note that the new equa-
tions we will define below always correspond to those of a one-factor
model.
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In particular, to compare the effects of the factor levels, it may be more
appropriate to take an average effect as a reference and to examine the
deviations of the effects of the different levels from this average effect.
Hence, the initial model (ℳ★

�
) writes

.8 9 = � + 8︸︷︷︸
<8

+�8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ�)

With this writing, � denotes the average effect and 8 = <8 − � the
differential (centered) effect of level 8.

While thismodel ismore easily interpretable, it is also over-parameterized
(see Chapter 8). Therefore, we must constrain its parameters to make
it regular. Generally, we consider the model (ℳ�) under the so-called
“natural” constraint ∑�

8=1 =88 = 0. This constraint has the good taste
to make the model orthogonal. Another commonly used constraint is
to impose 1 = 0. Ruses it by default while executing the command
lm(mark∼exam).

> anov_sing = lm(mark~exam, data=note)

> summary(anov_sing)

Call:

lm(formula = mark ~ exam, data = note)

Residuals:

Min 1Q Median 3Q Max

-5 -1 0 2 3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.0000 0.9526 12.597 2.3e-10 ***
examB 1.0000 1.2601 0.794 0.438

examC 2.0000 1.2981 1.541 0.141

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.333 on 18 degrees of freedom

Multiple R-squared: 0.1167, Adjusted R-squared: 0.0186

F-statistic: 1.19 on 2 and 18 DF, p-value: 0.3272

Exercise 11.1What is the relationship between the parameters of the three
models introduced above, namely

I the regular model (ℳ★
�
),

I the singular model (ℳ�) under the natural constraint
�∑
8=1

=88 = 0,

I the singular model (ℳ�) under the constraint 1 = 0?
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Definition 11.2 In the context of ANOVA, the dimension of the space in
which the expectation of the random variables.8 9 lives is called thedimension
of the model. This dimension is equal to the number of expectation parameters
considered in the modeling minus the number of identifiability constraints
necessary (independent) to estimate the said parameters.

The one-way ANOVAmodel is of dimension �, hence the notation (ℳ★
�
).

Indeed, we have:

I Either � parameters, the <8 , and no constraints in the regular
model (ℳ★

�
);

I Or � + 1 parameters, � and the 8 , and a constrain ∑�
8=1 =888 = 0,

in the singular model (ℳ�).

11.3.2 Model Without Treatment Effect

We want to know if the factor really influences the variable of interest ..
To test the absence of effect of the factor, wewill test the null hypothesis

ℋ0 : “<1 = <2 = . . . = <
′′
�

against the alternative

ℋ1 : “∃(8 , 9) such that <8 ≠ <
′′
9 .

The equality “<1 = <2 = . . . = <�” allows us to define a sub-model of
the complete one-way ANOVA model. By noting < this common mean,
this sub-model writes

.8 9 = < + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ★

1 )

This sub-model is of dimension 1: only one parameter and no con-
straints.

11.4 Estimation and Forecasting

Wecannow focus on estimating theparameters of thedifferentmodels. In
the case of the regular model (ℳ★

�
), these estimates directly follow from

the results we obtained in Chapter 6. For the singular parameterizations
(ℳ�), we have to be more careful.

Thereafter, to refer to the complete model without taking into account
the parametrization, we will note (ℳxy

�
).
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Let .̄8 · and .̄·· be the averages defined by:

I .̄8 · =
1
=8

=8∑
9=1

.8 9 the mean of level 8, and

I .̄·· =
1
=

�∑
8=1

=8∑
9=1

.8 9 the overall average.

11.4.1 Estimation in the Complete Model (ℳxy
�
)

Proposition 11.2 (Least squares estimation) In the model (ℳ★
�
), the <8

are estimated by

∀8 ∈ J1, �K , <̂8 = .̄8 · =
1
=8

=8∑
9=1

.8 9 .

They are called main effects of the factors. They are normally distributed
and their variance is �2/=8 .

Proposition 11.3 (Least squares estimation) In the model (ℳ�),

1. Under the “natural” constraint ∑�
8=1 =88 = 0, � and the 8 are

estimated by

�̂ = .̄·· and ∀8 ∈ J1, �K , ̂8 = .̄8 · − .̄·· .

2. Under the constraint 1 = 0, � and the 8 are estimated by

�̂ = .̄1· and ∀8 ∈ J2, �K , ̂8 = .̄8 · − .̄1· .

The estimation of the variance does not depend on the parameterization,
nor does the definition of the fitted values and the residuals.

Proposition 11.4 (Variance) The estimator of the variance �2 is given by

�̂2 =
1

= − �
�∑
8=1

=8∑
9=1

(
.8 9 − .̄8 ·

)2
.

For all 8 ∈ J1, �K and 9 ∈ J1, =8K, we predict .8 9 by:

I In (ℳ★
�
): .̂8 9 = <̂8 = .̄8 · ;

I In (ℳ�): .̂8 9 = �̂ + ̂8 = .̄·· + .̄8 · − .̄·· = .̄8 · .
For each parameterization, we deduce the residuals

�̂8 9 = .8 9 − .̂8 9 = .8 9 − .̄8 · .
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Exercise 11.5 Proof of Proposition 11.2. The model (ℳ★
�
) being regular, we

can use the general formula �̂ = (C--)−1 C-. or minimize the least square

function ℎ : (<1 , . . . , <�) ↦→
�∑
8=1

=8∑
9=1

(
.8 9 − <8

)2.

Exercise 11.6 Proof of Proposition 11.3. Consider the parametrization (ℳ�).

1. Under the “natural” constraint, the formula seen in Chapter 6 is not
valid anymore. We must therefore minimize the least squares function.

ℎ : (�, 1 , . . . , �) ↦→
�∑
8=1

=8∑
9=1

(
.8 9 − � − 8

)2
,

under the constraint ∑�
8=1 =88 = 0.

2. Under the constraint 1 = 0, we precede as before but adapting the
constraint.

11.4.2 Estimation in the Sub-Model (ℳ★
1 )

In this model, we need to estimate < and �2:

1. We estimate < by <̂ =
1
=

�∑
8=1

=8∑
9=1

.8 9 = .̄·· ;

2. For all 8 ∈ J1, �K and 9 ∈ J1, =8K, we predict .8 9 by .̂8 9 = <̂ = .̄·· ;
3. The residuals are then given by �̂8 9 = .8 9 − .̂8 9 = .8 9 − .̄·· .

11.4.3 Properties

Go back to the complete model (ℳxy
�
). We have the following properties,

analogous to those of linear regression, which does not depend on the
chosen parameterization.



134 Ch. 11 One-Way Analysis of Variance (ANOVA)

Proposition 11.7 1. The average of the residuals per level is zero:

∀8 ∈ J1, �K ,
1
=8

=8∑
9=1

�̂8 9 = 0 .

2. The overall mean of the residuals is zero:

1
=

�∑
8=1

=8∑
9=1

�̂8 9 = 0 .

3. The average of the adjusted values is equal to the average of the observed
values:

1
=

�∑
8=1

=8∑
9=1

.̂8 9 =
1
=

�∑
8=1

=8∑
9=1

.8 9 .

4. Residuals and fitted values are not correlated: Ĉ>E(�̂, .̂) = 0.

5. We can decompose the variance into V̂0A(.) = V̂0A(.̂) + V̂0A(�̂).

Exercise 11.8 Prove Proposition 11.7. You can use the proof of Proposition
9.2.

The last property leads us to define the notion of inter- and intra-group
variance.

Definition 11.3 (Variance decomposition)

1. We call inter-group variance the variance of the means by level,
weighted by the weights of these levels, i. e.

V̂0A(.̂) = 1
=

�∑
8=1

=8
(
.̄8 · − .̄··

)2
.

2. We call intra-group variance, or residual variance, the average of the
empirical variances of the observations in the levels, i. e.

V̂0A(�̂) = 1
=

�∑
8=1

=8∑
9=1

(
.8 9 − .̄8 ·

)2
=

1
=

�∑
8=1

=8V̂0A 8(.) ,
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1: Recall that, in (ℳxy
�
)

I (() = = V̂0A(.),
I ((' = = V̂0A(.̂),

inter-group sums of squares,

I ((� = = V̂0A(�̂),
intra-group sums of squares,

and note that this proposition is only a
rewriting of the general result

(() = ((� + ((' .

2: Also, this formula is just a rephrasing
in the anova vocabulary of

'2 =
(('

(()
= 1 − ((�

(()
.

where V̂0A 8(.) is the empirical variance in the level 8:

V̂0A 8(.) =
1
=8

=8∑
9=1

(
.8 9 − .̄8 ·

)2
.

Thus the relation [Proposition 11.7.5] “ V̂0A(.) = V̂0A(.̂) + V̂0A(�̂) ”
writes in this context1

“ Total variance = Inter variance + Intra variance ” .

The ((' and ((� quantities provide a good definition of what is meant
by inter and intra group variance.

I ((' =
�∑
8=1

=8
(
.̄8 · − .̄··

)2 measures the deviation of group means

from the overallmean: it is ameasure of variability between groups.

I On the other hand, ((� =
�∑
8=1

=8∑
9=1

(
.8 9 − .̄8 ·

)2 measures the devia-

tion of each individual from the mean of the group to which he
belongs: it is a measure of variability within each group.

Figure 11.2: Decomposition of the vari-
ance in the ANOVA context

Finally, we define the coefficient '2 as the ratio of the inter-group
variance to the total variance:2

'2 =
V̂0A(.̂)
V̂0A(.)

= 1 − V̂0A(�̂)
V̂0A(.)

.

In the context of ANOVA methods, it is often referred to as the empir-
ical correlation ratio between the quantitative variable . and the factor
considered. It measures the relationship between a quantitative variable
and a qualitative variable.

Let us mention the following two particular cases:

'2 = 1. Hence, �̂ = 0= , that is ∀9 ∈ J1, =8K, .8 9 = .̄8 ·
i. e. . is constant in each level.

'2 = 0. Hence, V̂0A(.̂) = 0, that is ∀8 ∈ J1, �K, .̄8 · = .̄··
i. e. the mean of . is the same in each cell.
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Listing 11.1: Confidence interval for the
regular model (ℳ★

�
).

> anov_reg = lm(mark~exam-1,

data=note)

> confint(anov_reg)

2.5 % 97.5 %

examA 9.998705 14.00129

examB 11.266828 14.73317

examC 12.147161 15.85284

Listing 11.2: Confidence interval for the
singular model (ℳ� ).

> anov_sing = lm(mark~exam,

data=note)

> confint(anov_sing)

2.5 % 97.5 %

(Intercept) 9.99871 14.00129

examB -1.64746 3.64746

examC -0.72731 4.72730

11.4.4 Confidence in the Estimate

In the general framework of the Gaussian model, it has been shown
that the estimators of the model parameters are Gaussian distributed.
This property can be applied to the one-factor ANOVA model as long as
normality and independence of errors are assumed.

To construct a confidence interval for the <8 , it is therefore sufficient
to construct a Student confidence interval using that, in the complete
regular model (ℳ★

�
),

<̂8 ∼(<8 ,
�2

=8
) and (= − �)�̂2 ∼ �2"2(= − �) .

So we get

��1−�(<8) =
[
<̂8 ± C=−� ,1−�/2

�̂√
=8

]
.

Under R , we execute the confint command, see Listing 11.1.

Exercise 11.9 Construct the confidence intervals given in Listing 11.2.

11.5 Factor Effect Test

As said in Section 11.3.2, we can study the effect of the factor on the
variable . by assuming equality of all the parameters of the model:

ℋ0 :

{
∀8 , 8′ ∈ J1, �K, <8 = <8′ := < in (ℳ★

� )
∀8 ∈ J1, �K, 8 = 0 in (ℳ�)

versus

ℋ1 :

{
∃8 , 8′ ∈ J1, �K, 8 ≠ 8′, such that <8 ≠ <8′ in (ℳ★

� )
∃8 ∈ J1, �K, such that 8 ≠ 0 in (ℳ�) .

Underℋ0, all parameters <8 are equal and the model writes

(ℳ★
1 ) : .8 9 = < + �8 9 , where <̂ = .̄·· =

1
=

�∑
8=1

=8∑
9=1

.8 9 .

In other words, we seek to compare the sub-model (ℳ★
1 ) to the complete

model (ℳ★
�
). We will therefore perform a Fisher sub-model test.

The equality of the parameters induces that the error sum of squares
((�1 in the model (ℳ★

1 ) is equal to the total sum of squares (() in the
complete model. Hence, ((�1 − ((� = (() − ((� = (('.
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The Fisher test statistic thus writes:

� =

(('

(� − 1)
((�

(= − �)

=

1
� − 1

�∑
8=1

=8
(
.̄8 · − .̄··

)2

1
= − �

�∑
8=1

=8∑
9=1

(
.8 9 − .̄8 ·

)2

ℋ0∼ ℱ (� − 1, = − �) .

We rejectℋ0 at the level � if � > 51−�,�−1,=−� .

In R , we obtain the following output.

> anov_cst = lm(mark~1, data=note)

> anova(anov_cst, anov_reg)

Analysis of Variance Table

Model 1: mark ~ 1

Model 2: mark ~ exam - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 110.95

2 18 98.00 2 12.952 1.1895 0.3272

Exercise 11.10 In the following two outputs, which hypotheses are being
tested? Construct the associated Fisher test. Note the difference between the
two procedures.

> anova(anov_reg)

Analysis of Variance Table

Response: mark

Df Sum Sq Mean Sq F value Pr(>F)

exam 3 3588 1196.00 219.67 2.311e-14 ***
Residuals 18 98 5.44

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(anov_sing)

Analysis of Variance Table

Response: mark

Df Sum Sq Mean Sq F value Pr(>F)

exam 2 12.952 6.4762 1.1895 0.3272

Residuals 18 98.000 5.4444
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11.5.1 Interpretations of the ANOVA Test

The test statistic � defined above can be seen as the ratio of two estimators
of �2: one that is always good, and one that is only good under ℋ0.
Indeed, we can show that:

E

[
(('

� − 1

]
= �2 + 1

� − 1

�∑
8=1

=8(<8 − �)2 , where � =
1
=

�∑
8=1

=8<8 .

The quantity ∑�
8=1 =8(<8 − �)2 is null if and only if for all 8 ∈ J1, �K,

<8 = �, i. e. when all averages are equal, i. e. when ℋ0 is true. We can
therefore deduce that underℋ0, (('�−1 is an unbiased estimator of �2.

Thus, testing the absence of effect of the factor is to compare two
estimators of �2 :

I one which is only good underℋ0, the one given by 1
�−1((', and

I one which is always good, the one obtained in the model (ℳ★
�
)

and given by 1
=−� ((�.

Remark 11.1 Underℋ0, the inter-group variability ((' is comparable
to the intra-group variability ((�, since all individual means are
confounded.

11.6 One-Factor Analysis of Variance Table

All these estimates can be displayed in a one-factor analysis of variance
table:

Source of Degree of Sum of Mean sum Test
51−�variation freedom Squares of Squares statistics

Factor � − 1 ((' =
�∑
8=1

=8
(
.̄8 · − .̄··

)2
"(' =

(('

� − 1
"('

�̂2 51−�,�−1,=−�

Residual = − � ((� =
�∑
8=1

=8∑
9=1

(
.8 9 − .̄8 ·

)2
�̂2 =

((�

= − �

Total = − 1 (() =
�∑
8=1

=8∑
9=1

(
.8 9 − .̄··

)2

11.7 Robustness to Assumptions

The one-way ANOVA methodology is more or less robust to the failure
of modeling assumptions, namely normality, homoscedasticity, and
error independence.
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Specifically:

1. The methodology is robust to sample non-normality;
2. The non-homogeneity of variances can be circumvented;
3. The most severe problem is the non-respect of the independence

of the errors, in which case it is necessary to use other models than
the one-factor ANOVA.

An analysis of the residuals should be carried out before using themodel
to try to validate it by verifying the model’s hypotheses in a descriptive
way or by adequate tests.

For example, one can test the homogeneity of the variances, i. e. test
ℋ0 : “�2

1 = . . . = �2
�
” againstℋ1 : “∃(8 , 9) such that �2

8
≠ �2

9
”, where �2

8

denotes the variance of the 8-th sample. This can be done using Bartlett’s
test, which is sensitive to non-normality, or Cochran’s test, which is
robust to non-normality but only applies when the � samples have the
same size.

When the equality of variances is not satisfied, one can, for instance,
use the non-parametric Kruskal-Wallis test to determine whether the
distributions of the � samples are identical.

11.8 Test of Comparison of Variances

The homogeneity of variances between groups is crucial in ANOVA
methods, but one rarely checks it. However, it can be tested in different
ways. The simplest solution would be to carry out �(� − 1)/2 comparisons
of the variances of all the groups using the classical test of equality
of variances of two Gaussian samples. In other words, the simplest
solution is to test for any pair (8 , 9) the hypothesisℋ0 : “�2

8
= �2

9
” against

the alternative ℋ1 : “�2
8
≠ �2

9
”. However, we then face the problem of

multiple tests: if we choose to perform each test at a level of 5%, we cannot
guarantee anything about the global level after having performed the
�(� − 1)/2 tests. Other test procedures (more or less robust to the underlying
modeling assumptions) allow for globally testing of the equality of
variances, such as the Bartlett test (sensitive to non-normality), the
Levene test, or the Cochran test. In the following, we present the Bartlett
test.

We make the assumptions of normality and independence of the �
samples, i. e. we suppose that the data H8 9 are the realizations of ran-
dom variables .8 9 of law (<8 , �2

8
), the variables .8 9 being globally

independent. We pose the null hypothesis

ℋ0 : “�2
1 = �2

2 = . . . = �2
� ”

that we want to test against the alternative hypothesis

ℋ1 : “∃8 , 9 ∈ J1, �K , �2
8 ≠ �2

9 ” .
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Let us denote (2
8
the unbiased estimators of the variances �2

8
of the 8-th

sample. Recall that

∀8 ∈ J1, �K , (2
8 =

1
=8 − 1

=8∑
9=1

(
.8 9 − .̄8 ·

)2
,

and therefore, we can rewrite ((� as ((� =
�∑
8=1
(=8 − 1)(2

8 .

Under the assumptionℋ0, we show that the statistic

2.3026
�

[
(= − �) ln

(
((�

= − �

)
−

�∑
8=1
(=8 − 1) ln((2

8 )
]
,

where � = 1 + 1
3(� − 1)

[
�∑
8=1

1
=8 − 1

− 1
� − 1

]
, follows approximately a

"2 with (� − 1) degrees of freedom. Of course, underℋ1, this random
variable no longer follows a "2(� − 1). This result is therefore sufficient
to construct a test ofℋ0 againstℋ1.
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In this chapter, we generalize the framework of the analysis of variance
from one factor to two factors. In other words, we aim to study the
influence of two qualitative variables on a quantitative variable.

As in the one-way ANOVA framework, we assume that :

I the factors influence only the mean of the quantitative variable .
and not its variance;

I the effects of the factors are additive;
I the variations other than those caused by the factors are Gaussian

and independent.

Suppose some biologists want to study the wheat yield, but with three
different species of wheat, while testing the two different fertilizer levels.
The biologists need to investigate not only the average growth between
the three species (main effect �) and the average growth for the two
fertilizer levels (main effect �), but also the interaction or relationship
between the two factors of species and fertilizer. Two-way analysis of
variance allows biologists to answer the question about yield affected by
species and fertilizer levels, and to account for the variation due to both
factors simultaneously.

12.1 Two-Way Analysis of Variance

Let . be the quantitative response variable we want to explain here
using two qualitative variables or factors.

I The first factor, called the row factor or �, admits � levels;
I the second, called the column factor or �, admits � levels.

We assume that the response variable observations are independent
and normally distributed with a mean that may depend on the levels of
factors � and �, but with a constant variance.

A particular combination of levels is called a treatment or a cell. There
are �� treatments. In the following, we note:

I 8 ∈ J1, �K : indices of the levels of the line factor �;
I 9 ∈ J1, �K : indices of the levels of the column factor �;
I =8 9 : number of observations for the level 8 of the factor �,

and for the level 9 of the factor �, i. e. the number of
observations in the cell (8 , 9);

I ℓ ∈ J1, =8 9K : indices of the observations of the cell (8 , 9);
I .8 9ℓ : the ℓ -th observation in cell (8 , 9);
I .̄8 9 · : average of the observations in the cell (8 , 9).
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Figure 12.1: Boxplot of wheat yield ac-
cording to dose and variety.

Figure 12.2: Boxplot ofwheat yield overall
(right) and by dose.

Figure 12.3: Boxplot of wheat yield overall
(right) and by variety.

Listing 12.1: Dataset for two-way analysis
of variance

> summary(wheat)

dose variety yield

1:9 L :6 Min. :55.65

2:9 N :6 1st Qu.:62.82

NF:6 Median :65.50

Mean :66.58

3rd Qu.:69.75

Max. :79.83

In the rest of this chapter, we will consider the example described in the
preamble and taken from the book of Husson and Pagès [1]. During a
study on factors influencing wheat yield, biologists compared

I three wheat varieties: factor � with modalities !, # and #�,
I and two nitrogen applications: factor � of modality “normal

application” or dose 1, and “intensive application” or dose 2.

The observation of the couple (variety, dose) is repeated three times. In
other words, =8 9 = 3 for all treatment (8 , 9); the experimental design is
said to be balanced. For each replication, we measured .8 9 , the yield in
q/ha. We are investigating whether there are any differences between
varieties or interactions between varieties and nitrogen inputs.

Figure 12.2 displays wheat yield as a function of nitrogen dose; Figure
12.3 displays the same yield but as a function of wheat variety. Finally,
Figure 12.1, more classical for two-way ANOVA, represents the yield as
a function of the nitrogen dose and the variety.

Definition 12.1 In the context of ANOVA, we call dimension of the model
the dimension of the space in which the expectation of the random variables
.8 9ℓ lives. This dimension is equal to the number of expectation parameters
considered in the modeling minus the number of identifiability constraints
necessary to estimate the parameters.

Hereafter, we will denoteℳ3 each model, where 3 denotes the dimen-
sion of the model then considered.

In the same way as for the one-way ANOVA, we assume that for all
(8 , 9 , ℓ ), the data H8 9ℓ is a realization of a random variable .8 9ℓ of law
(<8 9 , �2), and that the .8 9ℓ are globally independent.

In other words, we assume the following general model with two crossed
factors:

∀8 ∈ J1, �K , ∀9 ∈ J1, �K , ∀ℓ ∈ J1, =8 9K, .8 9ℓ = <8 9 + �8 9ℓ ,

where �8 9ℓ
8.8.3∼ (0, �2) ,

(ℳ★
��
)

where <8 9 is the theoretical mean or expected value of all observations
in cell (8 , 9). We refer to this model as the “cell means model”

12.1.1 Decomposition of Effects

This treatment modeling describes the joint effect of the two factors
by assuming a specific expectation <8 9 for each treatment (8 , 9) and an
intra-treatment variance �2 common to all treatments. In particular, it
does not allow for distinguishing the effects of each factor nor their
interaction. Hence, as with the one-factor ANOVA, we often prefer a
singular parametrization called the centered parametrization, or “‘factor
effects model”. It can decompose <8 9 into a general mean effect, separate
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main effects of the factors, and interaction or joint effects. The complete
model then writes, for all 8 ∈ J1, �K, 9 ∈ J1, �K and ℓ ∈ J1, =8 9K, as:

.8 9ℓ = � + 8 + � 9 + �8 9︸              ︷︷              ︸
<8 9

+�8 9ℓ , where �8 9ℓ
8.8.3∼ (0, �2) . (ℳ��)

The �� parameters <8 9 are thus redefined as a function of:

I � : the overall effect, i. e. the common effect of the two factors
regardless of their modalities,

I 8 : � − 1 parameters that characterize the main effects of factor �,
I � 9 : � − 1 parameters that characterize the main effects of factor �,
I �8 9 : (�−1)(�−1) interaction terms. They allow to take into account

the specific effect of the treatments beyond the sum of their main
effects (non-additivity of the main effects).

We then have a model defined via 1 + � + � + �� parameters. Thus, as
said, this model is singular. In particular, we must introduce 1 + � + �
constraints to estimate its parameters. In Chapter 8, we have seen the
interest in considering constraints in the framework of an orthogonal
system. In the case of the analysis of variance with two crossed factors,
the following property characterizes this orthogonality.

Proposition 12.1 In the two-way analysis of variance model, there exist
constraints that make the partition �, , �, � orthogonal if and only if

∀8 ∈ J1, �K, ∀9 ∈ J1, �K, =8 9 =
=8+ =+9
=

.

In this case, the constraints, called type I constraints, are

�∑
8=1

=8+ 8 = 0 ,
�∑
9=1

=+9 � 9 = 0 ,

∀8 ,
�∑
9=1

=8 9 �8 9 = 0 , ∀9 ,
�∑
8=1

=8 9 �8 9 = 0 .

(C⊥)

Exercise 12.2 Show that a complete and balanced experimental design, i. e. a
design such that for all treatment (8 , 9) =8 9 = 2BC4 > 0, is orthogonal.

The converse is not true.

In practice, the constraints used are often those of type III:∑
8

8 = 0 ,
∑
9

� 9 = 0 , ∀8 ,
∑
9

�8 9 = 0 and ∀9 ,
∑
9

�8 9 = 0 .

With this constraint system, orthogonality is only possible if the model
is balanced, i.e., if =8 9 is constant according to Proposition 12.1.
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Remark 12.1 In these identifiability constraints,

∀8 ,
∑
9

�8 9 = 0 and ∀9 ,
∑
9

�8 9 = 0

are not independent. Indeed, we can show that the (� + �) equations
defining the constraints can actually be reduced to (�+ �−1) equations.

Exercise 12.3 Demonstrate this for � = 2 and � = 3. More precisely, show
that the linear system made of the 5 constraints actually reduces to a linear
system with four equations.

Beware! The (C⊥) constraints are not the default constraints under R (cf.
model.matrix(yield∼dose*variety). Indeed, under R , in a similar
way to the one-way ANOVA, the default constraints are

1 = �1 = �19 = �81 = 0 . (CR )

But, they can be easily modified.

In the following, we consider an orthogonal experimental design.

12.1.2 Two-Way Additive ANOVA

However, the presence of the interaction effect is not systematic. For
example, when =8 9 = 1 for all (8 , 9) (absence of repetitions), we cannot
take this term into account in the modeling because we do not observe
enough data to estimate it, which does not mean that the interaction
does not exist.

In the additive two-way ANOVA model, we assume that there is no
interaction effect between the two factors. Then, for all 8 ∈ J1, �K, 9 ∈ J1, �K
and ℓ ∈ J1, =8 9K, the model writes

.8 9ℓ = � + 8 + � 9 + �8 9ℓ , where �8 9ℓ
8.8.3∼ (0, �2) . (ℳ�+�−1)

Note that the additive model is a sub-model of the complete model with
interaction.

Exercise 12.4 Prove that this model is orthogonal under the constraints∑�
8=1 8 = 0 and ∑�

9=1 � 9 = 0.
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12.1.3 Model Without Effect of Factor �

The model where a possible effect of factor � is not taken into account is
defined by, for all 8 ∈ J1, �K, 9 ∈ J1, �K and ℓ ∈ J1, =8 9K,

.8 9ℓ = � + � 9 + �8 9ℓ , where �8 9ℓ
8.8.3∼ (0, �2) , (ℳ�)

and the identifiability constraint ∑�

9=1 � 9 = 0.

12.1.4 Model Without Effect of Factor �

Likewise, the model where a possible effect of factor � is not taken into
account is defined by, for all 8 ∈ J1, �K, 9 ∈ J1, �K and ℓ ∈ J1, =8 9K,

.8 9ℓ = � + 8 + �8 9ℓ , where �8 9ℓ
8.8.3∼ (0, �2) , (ℳ�)

and the identifiability constraint ∑�
8=1 8 = 0.

12.1.5 Model Without Treatment Effect

The model in which neither of the two factors � and � are taken into
account is

.8 9ℓ = � + �8 9ℓ , where �8 9ℓ
8.8.3∼ (0, �2) . (ℳ★

1 )

This model is regular and does not require identifiability constraints.

12.2 Estimation and Forecasting

Let the following notations: For all 8 ∈ J1, �K and 9 ∈ J1, �K,

.̄8 ·· =
1
=8+

�∑
9=1

=8 9∑
ℓ=1

.8 9ℓ , where =8+ =
�∑
9=1

=8 9 ,

.̄·9 · =
1
=+9

�∑
8=1

=8 9∑
ℓ=1

.8 9ℓ , where =+9 =
�∑
8=1

=8 9 ,

.̄··· =
1
=

�∑
8=1

�∑
9=1

=8 9∑
ℓ=1

.8 9ℓ , where = =
�∑
8=1

=8+ =
�∑
9=1

=+9 .

12.2.1 Estimation in the Cell Means Model

Proposition 12.5 Let 8 ∈ J1, �K, 9 ∈ J1, �K and ℓ ∈ J1, =8 9K.
In the regular parametrization (ℳ★

��
): .8 9ℓ = <8 9 + �8 9ℓ ,
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I <8 9 is estimated by

<̂8 9 =
1
=8 9

=8 9∑
ℓ=1

.8 9ℓ = .̄8 9 · ∼ 

(
<8 9 ,

�2

=8 9

)
;

I the variance is estimated by

�̂2 =
1

= − ��
∑
8 9ℓ

(
�̂8 9ℓ

)2
=

1
= − ��

∑
8 9ℓ

(
.8 9ℓ − .̄8 9 ·

)2
.

Exercise 12.6 Prove this proposition by using the fact that we are dealing
with a regular linear model.

The forecast of a .8 9ℓ in this model is therefore given by:

I Adjusted values: .̂8 9ℓ = <̂8 9 = .̄8 9 · ;
I Residuals: �̂8 9ℓ = .8 9ℓ − .̄8 9 · .

12.2.2 Estimation in the Factor Effects Model

Proposition 12.7 Let 8 ∈ J1, �K, 9 ∈ J1, �K, ℓ ∈ J1, =8 9K and the complete
singular model (ℳ��): .8 9ℓ = � + 8 + � 9 + �8 9 + �8 9ℓ .
Then, under the type I constraints (C⊥), we have the following estimates:

�̂ = .̄··· ,
̂8 = .̄8 ·· − .̄··· ,
�̂ 9 = .̄·9 · − .̄··· ,
�̂8 9 = .̄8 9 · − .̄8 ·· − .̄·9 · + .̄··· .

Exercise 12.8 Prove this proposition. To this aim, you can minimize the least
squares function under the constraints (C⊥).

The forecast of a .8 9ℓ in this model is therefore given by

.̂8 9ℓ = �̂ + ̂8 + �̂ 9 + �̂8 9 = .̄8 9 · .
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For our example, the results obtained with R are reported below. The
first output is related to the default constraints used by R (CR ), while the
second implements the orthogonality constraints (C⊥).

> summary(lm(yield ~ dose * variety, data=wheat))

Call:

lm(formula = yield ~ dose * variety, data = wheat)

Residuals:

Min 1Q Median 3Q Max

-7.667 -2.296 -0.325 2.623 8.573

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.257 2.536 28.101 2.55e-12 ***
dose2 2.500 3.586 0.697 0.49899

varietyN -12.223 3.586 -3.409 0.00519 **
varietyNF -4.453 3.586 -1.242 0.23801

dose2:varietyN -0.200 5.071 -0.039 0.96919

dose2:varietyNF -2.007 5.071 -0.396 0.69928

---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

Residual standard error: 4.392 on 12 degrees of freedom

Multiple R-squared: 0.6725, Adjusted R-squared: 0.536

F-statistic: 4.928 on 5 and 12 DF, p-value: 0.01105

Listing 12.2: Default constraints (CR )
> summary(lm(yield ~ C(dose,sum) + C(variety,sum)

+ C(dose,sum):C(variety,sum), data=wheat))

Call:

lm(formula = yield ~ C(dose, sum) + C(variety, sum)

+ C(dose, sum):C(variety, sum), data = wheat

)

Residuals:

Min 1Q Median 3Q Max

-7.667 -2.296 -0.325 2.623 8.573

Coefficients:

Estimate Std.Err t value Pr(>|t|)

(Intercept) 66.580 1.035 64.316 < 2e-16 ***
C(dose, sum)1 -0.882 1.035 -0.852 0.410775

C(variety, sum)1 5.927 1.464 4.048 0.001615 **
C(variety, sum)2 -6.397 1.464 -4.369 0.000913 ***
C(dose,sum)1:C(variety,sum)1 -0.368 1.464 -0.251 0.805897

C(dose,sum)1:C(variety,sum)2 -0.268 1.464 -0.183 0.857923

---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

Residual standard error: 4.392 on 12 degrees of freedom

Multiple R-squared: 0.6725, Adjusted R-squared: 0.536

F-statistic: 4.928 on 5 and 12 DF, p-value: 0.01105

Listing 12.3: Orthogonality constraints
(C⊥)
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Exercise 12.9 Check that �̂, ̂8 , �̂ 9 and �̂8 9 are indeed unbiased estimators

Note that we have not yet estimated the residual variance �2. For this,
we need an additional assumption (see Section 12.3.2).

12.2.3 Estimation in Sub-Models

Since the experimental design is orthogonal, for all submodels of the full
model (ℳ��), the estimate of the parameters �, 8 and � 9 is unchanged.
Regardless of the submodel considered, we have

�̂ = .̄··· ,
̂8 = .̄8 ·· − .̄··· ,
�̂ 9 = .̄·9 · − .̄··· .

Using the estimators of the different parameters, we obtain, for each
sub-model, the following predictions:

I Additive model (ℳ�+�−1) : .̂8 9ℓ = �̂+ ̂8 + �̂ 9 = .̄8 ·· + .̄·9 · − .̄··· ;
I No factor �model (ℳ�) : .̂8 9ℓ = �̂ + �̂ 9 = .̄·9 · ;
I No factor � model (ℳ�) : .̂8 9ℓ = �̂ + ̂8 = .̄8 ·· ;
I No treatment model (ℳ★

1 ) : .̂8 9ℓ = �̂ = .̄··· .

12.3 Variance Analysis

In the previous paragraphs, we were only interested in the least squares
estimation of the parameters modeling the average of the observations,
i. e. �, , � and �. Our goal is now to study the intra-class variance �2.

12.3.1 Variance Decomposition

Let assume an orthogonal design. Then, as in the one-way analysis
of variance, the total variability of . is decomposed into inter- and
intra-group variability:

I ((', the inter-variance, explained by the model,
I and ((� the intra-variance, not-explained by the model.
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1: Note that the definition of (() does
not depend on the considered model, as
well as ((�, ((� and ((��, once they
are defined.

Consider the complete model (ℳ��). We find the same decomposition
as before:

�∑
8=1

�∑
9=1

=8 9∑
ℓ=1

(
.8 9ℓ − .̄···

)2

︸                        ︷︷                        ︸
(()

=

�∑
8=1

�∑
9=1

=8 9
(
.̄8 9 · − .̄···

)2

︸                        ︷︷                        ︸
(('

+
�∑
8=1

�∑
9=1

=8 9V̂0A 8 9(.)︸                  ︷︷                  ︸
((�

,

where V̂0A 8 9(.) =
1
=8 9

=8 9∑
ℓ=1

(
.8 9ℓ − .̄8 9 ·

)2.

In the case of the two-way crossed model, the inter-cell variance (('
can be decomposed into a variance explained by the first factor �, a
variance explained by the second factor �, and a variance explained by
the interactions between the two factors. Hence, for two-way orthogonal
design, we define the following quantities:

I ((�, the factor �main effect sums of squares:

((� =

�∑
8=1

=8+(.̄8 ·· − .̄···)2 =
�∑
8=1

=8+ (̂8)2 ;

I ((�, the factor � main effect sums of squares:

((� =

�∑
9=1

=+9(.̄·9 · − .̄···)2 =
�∑
9=1

=+9 (�̂ 9)2 ;

I ((��, the interaction sum of squares:

((�� =

�∑
8=1

�∑
9=1

=8 9(.̄8 9 · − .̄8 ·· − .̄·9 · + .̄···)2 =
�∑
8=1

�∑
9=1

=8 9 (�̂8 9)2 .

Hence, we can prove that ((' = ((� + ((� + ((��, leading to

(() = ((� + ((� + ((�� + ((� .

Let 3 ∈ {1, � , � , � + � − 1, ��}. Given the model (ℳ3), we will from now
denote (('3 and ((�3 as the corresponding sums of squares1 in case
of ambiguity. When the dimension is not specified, we place ourselves
in the complete model with interaction.

12.3.2 Variance Estimation

Let us now assume a complete and balanced experimental design, i. e. that
for each treatment (8 , 9), we have a constant and strictly positive number
of measures of .: =8 9 = !. Note that in this case = = ∑�

8

∑�

9=1 =8 9 = ��!.
This design is in particular orthogonal.

Proposition 12.10 Under the assumptions of the full balanced model with

interaction, �̂2 =
((�3
= − 3 is an unbiased estimator of �2 in the model (ℳ3).

Moreover,
(= − 3) �̂2 ∼ �2 "2(= − 3) .
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Table 12.1: Error sum of squares, or intra-
class variance, depending on the consid-
ered sub-model of the complete model.

((��� =
∑
8 , 9 ,ℓ

(
.8 9ℓ − .̄8 9 ·

)2

((��+�−1 =
∑
8 , 9 ,ℓ

(
.8 9ℓ − .̄8 ·· − .̄·9 · + .̄···

)2

((�� =
∑
8 , 9 ,ℓ

(
.8 9ℓ − .̄8 ··

)2

((�� =
∑
8 , 9 ,ℓ

(
.8 9ℓ − .̄·9 ·

)2

((�1 =
∑
8 , 9 ,ℓ

(
.8 9ℓ − .̄···

)2

At Table 12.1, you can find for each model (ℳ3) the value of their error
sum of squares. In this table, the notation ∑

8 , 9 ,ℓ refers to the triple sum
on 8 ∈ J1, �K, 9 ∈ J, �K and ℓ ∈ J1, !K.

We demonstrate this result in the (ℳ��) model for more readability.
However, the proof below can be adapted to any of its sub-models.

Proof. First, note that
!∑
ℓ=1

(
.8 9ℓ − .̄8 9 ·

)
= 0. Hence,

�∑
8=1

�∑
9=1

!∑
ℓ=1

�2
8 9ℓ =

�∑
8=1

�∑
9=1

!∑
ℓ=1

(
.8 9ℓ − .̄8 9 · + .̄8 9 · − � − 8 − � 9 − �8 9

)2

=

�∑
8=1

�∑
9=1

!∑
ℓ=1

(
.̄8 9 · − � − 8 − � 9 − �8 9

)2 +
�∑
8=1

�∑
9=1

!∑
ℓ=1

(
.8 9ℓ − .̄8 9 ·

)2

+ 2
�∑
8=1

�∑
9=1

!∑
ℓ=1

(
.̄8 9 · − � − 8 − � 9 − �8 9

) (
.8 9ℓ − .̄8 9 ·

)
︸                                              ︷︷                                              ︸

=

(
.̄8 9 ·−�−8−� 9−�8 9

) ∑!
ℓ=1

(
.8 9ℓ−.̄8 9 ·

)
=0

= !
�∑
8=1

�∑
9=1

(
.̄8 9 · − � − 8 − � 9 − �8 9

)2 + ((��� .

Then, since the random variables �8 9ℓ are i.i.d of law(0, �2), we deduce
that

�∑
8=1

�∑
9=1

!∑
ℓ=1

( �8 9ℓ
�

)2
∼ "2(=) , where = = ��! .

In the same way, since the random variables .̄8 9 · are independent of law


(
� + 8 + � 9 + �8 9 , �

2

A

)
,wededuce that thevariables

√
!
�

(
.̄8 9 · − (� + 8 + � 9 + �8 9)

)
are i.i.d of law(0, 1). Consequently,

!
�∑
8=1

�∑
9=1

(
.̄8 9 · − � − 8 − � 9 − �8 9

�

)2

∼ "2(��)

and we conclude using Cochran’s theorem.

12.4 Factor Effect Test

In two-factor ANOVA, three assumptions are commonly considered:

1. The assumption of non-interaction between the two factors or additiv-
ity of the two factors: Within (ℳ��),

ℋ��
0 : ∀(8 , 9) ∈ J1, �K × J1, �K , �8 9 = 0 .

This assumption imposes (� − 1)(� − 1) constraints.

2. The assumption of no effect of the factor �: Within (ℳ�+�−1),

ℋ�
0 : ∀8 ∈ J1, �K , 8 = 0 .
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(a) Significant interaction.

(b) No significant interaction.

(c) No effect of the factor �.

(d) No effect of the factor �.

(e) None of the factors have an effect.

Figure 12.4: Interaction plot: Means of the
variable ., for each level of one factor, as
a function of the levels of the other.

This assumption imposes (� − 1) constraints.

3. The assumption of no effect of the factor �: Within (ℳ�+�−1),

ℋ�
0 : ∀9 ∈ J1, �K , � 9 = 0 .

This assumption imposes (� − 1) constraints.

Remark 12.2 A crucial point about the approach to these hypothesis
tests: If there are interactions between the two factors, both factors that make
up the interaction must be introduced into the model. In this case, there
is no need to test the effect of each of the two factors. Indeed, the
presence of interactions between the two factors means that there is a
combined effect and, thus, in particular, an effect of each factor.

Regarding the presence or not of interaction, we can start by considering
a graphical response.

12.4.1 Interaction Plot

The interaction diagram allows to visualize graphically the presence or
absence of interactions.

For each fixed 9, we represent in an orthogonal reference frame the"(8 , 9)
of coordinates (8 , <̂8 9 = .̄8 9 ·). Then, we draw the segments joining the
pairs of points "(8−1, 9) and "(8 , 9). Thus, for each 9 fixed, we obtain a
broken line.

Proposition 12.11 If the non-interaction hypothesis is true, then the broken
lines in the interaction diagram are parallel.

Proof. The broken line associated with level 9 joins the points (1, <̂19),
(2, <̂29), . . . , and (� , <̂� 9).

If there is no interaction, then these points have coordinates (1, ̂1 + �̂ 9),
(2, ̂2 + �̂2), . . . , and (� , ̂� + �̂ 9) respectively. Therefore, the broken lines
associated with levels 9 and 9′ correspond by a vertical translation of
amplitude �̂ 9 − �̂ 9′ .

On this graph, we can read the main effect of the modalities 9 (the
average level of a broken line) and the main effect of the modalities 8
(the average of the ordinates of the points with fixed abscissa). As far as
interactions are concerned, we will rarely obtain strictly parallel broken
lines. The problem will then be whether their non-parallelism reflects a
significant interaction. Therefore, a test is necessary.

Figure 12.4 illustrates the behavior of the model cell means for different
situations. Each line is called a profile, and the crossing of these profiles
characterizes the presence of interactions, while parallelism indicates
the absence of interactions. It is also possible to detect the presence of
an effect of a factor, or to question the relevance of the slicing into the
given levels of a factor.
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I Figure 12.4a clearly shows a significant interaction between the
factors: The change in response when level � changes, depends on
level �;

I Figure 12.4b shows no significant interaction: The change in response
for the level of factor � is the same for each level of factor �;

I Figure 12.4c shows no significant interaction, and that the average
response does not depend on the level of factor �;

I Figure 12.4d shows no significant interaction, and that the average
response does not depend on the level of factor �;

I Figure 12.4e illustrates no interaction and neither factor has any
effect on the response.

The question is obviously to test whether observed crossings, or group-
ings, are considered significant.

Beware! A lack of parallelismmay also be due to a non-linear relationship
between the variable . and one of the factors.

12.4.2 Fisher Sub-Model Tests

In the following, for the sake of brevity, we will not specify the sets of
definitions of the indices 8, 9 and ℓ while setting up the different models.
For the record, 8 ∈ J1, �K, 9 ∈ J1, �K and ℓ ∈ J1, =8 9K. In the following,
unless otherwise stated, �8 9ℓ is assumed to be i.i.d. of law(0, �2).

Moreover, we assume a complete and balanced experimental design. As a
consequence, ℓ is valued in J1, !K.

12.4.2.1 Non-Interaction Between the two Factors

We want to test

ℋ��
0 : ∀(8 , 9) ∈ J1, �K × J1, �K , �8 9 = 0

against the alternative

ℋ��
1 : ∃(8 , 9) ∈ J1, �K × J1, �K , �8 9 ≠ 0 .

This amounts to establish whether the additive model

(ℳ�+�−1) : .8 9ℓ = � + 8 + � 9 + �8 9ℓ

is an acceptable sub-model of the complete model with interaction

(ℳ��) : .8 9ℓ = � + 8 + � 9 + �8 9 + �8 9ℓ .

The Fisher statistic for this test is:

��� =

((��

(� − 1)(� − 1)
((���

= − ��

�0∼ ℱ
(
(� − 1)(� − 1), = − ��

)
,
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and the rejection area is ℛ� = {��� > 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ

(
(� − 1)(� − 1), = − ��

)
.

Exercise 12.12 Prove this result.

12.4.2.2 No Effect of Factor �

As explained previously, this test is only interesting if the previous test
has shown the absence of interaction. We can present this test in two
ways, which leads to two different writing of the Fisher test statistic:

1. Consider the complete model (ℳ��) and simultaneously test the
nullity of the 8 and the �8 9 ;

2. Start by testing the absence of interaction effects. Then, in the
additive model (ℳ�+�−1), test only the nullity of the 8 .

These two tests are actually equivalent.

Method #1 : Let the complete model (ℳ��). We test the hypothesis

ℋ�
0 : ∀8 ∈ J1, �K , 8 = 0 and ∀(8 , 9) ∈ J1, �K × J1, �K , �8 9 = 0

against

ℋ�
1 : ∃8 ∈ J1, �K , 8 ≠ 0 or ∃(8 , 9) ∈ J1, �K × J1, �K , �8 9 ≠ 0 .

In other words, we compare the �-factor ANOVA model

(ℳ�) : .8 9ℓ = � + � 9 + �8 9ℓ

to the complete model

(ℳ��) : .8 9ℓ = � + 8 + � 9 + �8 9 + �8 9ℓ .

The Fisher statistic for this test is:

�#1
� =

((� + ((��
�� − �
((���

= − ��

�0∼ ℱ
(
�� − � , = − ��

)
,

and the rejection area is ℛ� = {�#1
�

> 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ

(
�� − � , = − ��

)
.
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Method #2 : Let assume that we already established that (ℳ�+�−1) is an
acceptable sub-model of (ℳ��). By working within (ℳ�+�−1), we now
want to test

ℋ�
0 : ∀8 ∈ J1, �K , 8 = 0 against ℋ�

1 : ∃8 ∈ J1, �K , 8 ≠ 0 .

In other words, we compare the �-factor ANOVA model

(ℳ�) : .8 9ℓ = � + � 9 + �8 9ℓ

to the additive model

(ℳ�+�−1) : .8 9ℓ = � + 8 + � 9 + �8 9ℓ .

The Fisher statistic for this test is:

�#2
� =

((�

� − 1
((��+�−1

= − (� + � − 1)

�0∼ ℱ
(
� − 1, = − (� + � − 1)

)
,

and the rejection area is ℛ� = {�#2
�

> 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ

(
� − 1, = − (� + � − 1)

)
.

Exercise 12.13 Prove the previous results.

12.4.2.3 No Effect of Factor �

The roles played by factors � and � are symmetrical. Hence, the imple-
mentation of the test of the effect of factor � on . is identical to that for
factor �. In other words, we can:

I either compare the �-factor ANOVA model

(ℳ�) : .8 9ℓ = � + 8 + �8 9ℓ

to the complete model

(ℳ��) : .8 9ℓ = � + 8 + � 9 + �8 9 + �8 9ℓ ,

which leads to the test statistic

�#1
� =

((� + ((��
�� − �
((���

= − ��

�0∼ ℱ
(
�� − � , = − ��

)
,
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of rejection area is ℛ� = {�#1
�

> 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ

(
�� − � , = − ��

)
;

I or compare the �-factor ANOVA model

(ℳ�) : .8 9ℓ = � + 8 + �8 9ℓ

to the additive model

(ℳ�+�−1) : .8 9ℓ = � + 8 + � 9 + �8 9ℓ ,

which leads to the test statistic

�#2
� =

((�

� − 1
((���

= − ��

�0∼ ℱ
(
� − 1, = − ��

)
,

of rejection area is ℛ� = {�#2
�

> 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ

(
� − 1, = − ��

)
.

Exercise 12.14 Prove the previous results.

12.4.2.4 No Treatment Effect

The model (ℳ★
1 ) at the same time sub-model of (ℳ�), (ℳ�), (ℳ�+�−1)

and (ℳ��), and (ℳ�), (ℳ�), (ℳ�+�−1) being themselves sub-models of
(ℳ��), etc. there are various ways to perform this test procedure.

One way is to compare the model (ℳ★
1 ) with the complete model (ℳ��).

In this case, we obtain for test statistic

� =

(('��

�� − 1
((���

= − ��

�0∼ ℱ
(
�� − 1, = − ��

)
,

and for rejection zone ℛ� = {� > 51−�}, where 51−� is the (1− �) quantile
of the law ℱ

(
�� − 1, = − ��

)
.
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Remark 12.3 Notice that in ���, �#1
�
, �#1

�
and �, the denominator is

always ((� with its degree of freedom = − ��; the numerators change
depending on the test. This is true as long as the effects are fixed.
That is to say that the levels of our variables are of intrinsic interest in
themselves - they are fixed by the experimenter.

Exercise 12.15 Consider the following R outputs associated with our example.
Which model should be used to study these data?

> anov_sing = lm(yield ~ dose * variety, data=wheat)

> anov_add = lm(yield ~ dose + variety, data=wheat)

> anova(anov_add,anov_sing)

Analysis of Variance Table

Model 1: yield ~ dose + variety

Model 2: yield ~ dose * variety

Res.Df RSS Df Sum of Sq F Pr(>F)

1 14 235.14

2 12 231.47 2 3.6654 0.095 0.91

> anov_dose = lm(yield ~ dose, data=wheat)

> anova(anov_dose,anov_add)

Analysis of Variance Table

Model 1: yield ~ dose

Model 2: yield ~ dose + variety

Res.Df RSS Df Sum of Sq F Pr(>F)

1 16 692.72

2 14 235.14 2 457.58 13.622 0.0005192 ***
---

Signif. codes: 0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1

> anov_variety = lm(yield ~ variety, data=wheat)

> anova(anov_variety,anov_add)

Analysis of Variance Table

Model 1: yield ~ variety

Model 2: yield ~ dose + variety

Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 249.15

2 14 235.14 1 14.01 0.8341 0.3765
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12.5 Analysis of Variance Table with two
Crossed Factors

In the case of the two-way crossed ANOVA with an orthogonal design,
we recall that we can decompose the total variability into

(() = ((' + ((� = ((� + ((� + ((�� + ((� .

The analysis of variance table for an orthogonal design with two crossed
factors can thus be drawn up.

Source of Degree of Sum of Mean sum Test
51−�variation freedom Squares of Squares statistics

“Line” � � − 1 ((� "(� =
((�

� − 1
�� =

"(�

�̂2 51−�,�−1,=−��

“Column” � � − 1 ((� "(� =
((�

� − 1
�� =

"(�

�̂2 51−�,�−1,=−��

Interactions (� − 1)(� − 1) ((�� "(�� =
((��

(� − 1)(� − 1) ��� =
"(��

�̂2 51−�,(�−1)(�−1),=−��

Residual = − �� ((� �̂2 =
((�

= − ��

Total = − 1 (()

Recall that:

(() =

�∑
8=1

�∑
9=1

=8 9∑
ℓ=1

(
.8 9ℓ − .̄···

)2 ;

((� =

�∑
8=1

�∑
9=1

=8 9
(
.̄8 ·· − .̄···

)2
=

�∑
8=1

�∑
9=1

=8 9
(
̂8

)2 ;

((� =

�∑
8=1

�∑
9=1

=8 9
(
.̄·9 · − .̄···

)2
=

�∑
8=1

�∑
9=1

=8 9
(
�̂ 9

)2 ;

((�� =

�∑
8=1

�∑
9=1

=8 9
(
.̄8 9 · − .̄8 ·· − .̄·9 · + .̄···

)2
=

�∑
8=1

�∑
9=1

=8 9
(
�̂8 9

)2
.





Figure 13.1: Final versus initial weights
by location..

Figure 13.2: Evolution of initial and final
weights for each treatment.
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In this chapter, we will present the analysis of covariance (ANCOVA)
model only in the simple framework where we seek to explain a quanti-
tative variable . as a function of another quantitative variable G, called
covariate, and a qualitative variable or factor �. The notions we will
study here can be generalized to the case of several covariates operating
in a linear or polynomial way, as well as to the case of several factors,
possibly with a crossed or hierarchical structure.

Inparticular, the analysis of covariance fallswithin thegeneral framework
of the linear model. It can be seen as a mixture of analysis of variance
(Chapter 11) and linear regression (Chapter 9).

Assume that the factor � has � levels. Each individual in the sample is
marked by a double index (8 , 9):

I The index 8 ∈ J1, �K represents the level of the factor � to which
the individual belongs,

I and 9 corresponds to the index of the individual in the level 8.

For each individual (8 , 9), we observe a value G8 9 of the variable G and a
value .8 9 of the variable .. For each level 8 ∈ J1, �K of �, we observe

I =8 values (G81 , . . . , G8=8 ) of G
I and a =8-sample (.81 , . . . , .8=8 ) of the random variable .

Finally, we note = = ∑�
8=1 =8the total number of observations.

In this chapter, wewill illustrate the discussed conceptswith the help of a
data set listing the weight of oysters as a function of the temperature and
oxygenation of their culture medium. More precisely, we have = = 20
bags of 10 oysters, and we place, during one month, these 20 bags in
a random way in � = 5 different locations of a cooling channel of a
power plant at a rate of =8 = 4 bags per location. These locations differ
in temperature and oxygenation. For each bag, we observe:

I initial_weight: its weight before the experiment,
I final_weight: its weight after the experiment,
I treatment: its location encoded from 1 to 5.

The purpose of this study is to know if temperature and oxygenation
conditions influence the evolution of oyster weight.

Figure 13.1 displays the data. In order to jointly visualize the effect of the
treatment factor and the possible (linear) relationship between the final
weight . and the initial weight G of the oysters, we plot the cloud of
points with coordinates (G8 9 , .8 9), where the same symbol represents all
the points of level 8. We can also plot a boxplot of each location’s initial
and final weights (Figure 13.2).
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Figure 13.3: Complete ANCOVA model. Fit-
ting the regression lines to the data, ac-
cording to the treatment.

We can view ANCOVA from two perspectives.

I The first is a simple linear regression by subgroup. ANCOVA can
then allow us to answer the question: "Is the linear relationship
between the response . and the quantitative variable G different
between the subgroups, i. e., according to the modalities of the
qualitative variable or levels of the factor �? For example, " Does
the linear relationship between the weight of oysters after and
before the experiment depend on their culture medium?
When ANCOVA is considered from this linear regression point of
view, rather intuitively, one represents the data as straight lines, as
in Figure 13.3.

I The second way of conceiving ANCOVA is to compare the pre-
dicted means of the response ., among the subgroups. ANCOVA
allows us to compare the adjusted means of each of the groups in-
duced by the levels of the factor �, taking into account/correcting
for the variability of the covariate G. In this situation, the ANCOVA
enables us to answer the question: "Does the oysters’ weight at
the end of the experiment depend on their location in the channel
once we take their initial weight into account?"
In this situation, the graphical representation in Figure 13.9 is
more appropriate.

13.1 Analysis of Covariance

In the simple ANCOVA framework, the regular model writes as:

∀8 ∈ J1, �K , ∀9 ∈ J1, =8K, .8 9 = 08 + 18G8 9 + �8 9 ,

where �8 9
8.8.3∼ (0, �2) .

(ℳ★
2�)

In other words, for each level 8 of factor�, we estimate a linear regression
line of. on G. At a fixed level 8, this line is parameterized by its intercept
08 and by its slope 18 .‘

We can write the model in matrix form:

©«
.(1)
...
...

.(�)

ª®®®®®¬︸︷︷︸
.

=

©«
-(1)

-(2)
. . .

-(�)

ª®®®®¬︸                        ︷︷                        ︸
-

©«

01
11
...

0�
1�

ª®®®®®®¬︸︷︷︸
�

+
©«
�(1)
...
...

�(�)

ª®®®®®¬︸︷︷︸
�

,

where for all level 8 ∈ J1, �K,

.(8) =
©«
.81
...

.8=8

ª®®¬ , -(8) =
©«
1 G81
...

...

1 G8=8

ª®®¬ and �(8) =
©«
�81
...

�8=8

ª®®¬ .
In graphic terms, we observe the adjustment of the regression lines in
Figure 13.3.
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Figure 13.4: Fitting the model without
interaction (ℳ�+1) to the data.

Figure 13.5: Fitting the simple linear re-
gression model (ℳ★

2 ) to the data.

13.1.1 Decomposition of Effects

As with the factorial models, there is a reparameterization that reveals
differential effects with respect to a reference level. The model associated
with this new parametrization then writes

.8 9 = � + 8︸︷︷︸
08

+ (� + �8)︸  ︷︷  ︸
18

G8 9 + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ2�)

This parametrization reveals :

I �8 : interaction effect between the covariate G and the factor �;
I 8 : differential effect of the factor � on the variable .;
I �: differential effect of the covariate G on the variable ..

The model is then over-parameterized and we have to add identifica-
tion constraints. As for the ANOVA, several choices are possible. The
R software imposes to see the first level as reference, i. e. it is imposed
in R that 1 = �1 = 0. In practice, we often use the so-called natural
constraints: ∑�

8=1 =88 =
∑�
8=1 =8�8 = 0.

13.1.2 Model without Interaction

Still following the idea of ANOVA, we can define an additive model, i.e.
an ANCOVAmodel without interaction between the covariate G and the
factor �. We then obtain the model of equation:

.8 9 = � + 8 + � G8 9 + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ�+1)

As before, this model becomes identifiable under the constraint 1 = 0
(R )∑�

8=1 =88 = 0 (natural constraint). Hence, its dimension is � + 2− 1 =
� + 1.

Graphically, this model consists in fitting parallel lines, with slope �, for
each treatment. See Figure 13.4 for an example.

Often, one prefers the parametrization,

.8 9 = � + 8 + � (G8 9 − Ḡ ··) + �8 9 , where �8 9
8.8.3∼ (0, �2) ,

whichmakesvisible themeanvalueof the covariate Ḡ ·· = 1
=

∑�
8=1

∑�

9=1 G8 9 .

13.1.3 Model without Effect of the Factor

If the factor � is not involved in the modeling, then the different
regression lines will be identical for each level of the factor, i. e.

01 = 02 = . . . = 0� ⇐⇒ 1 = 2 = . . . = � = 0 ,

and the model writes:

.8 9 = � + � G8 9 + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ★

2 )
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Figure 13.6: Fitting the one-way analysis
of variance model (ℳ� ) to the data.

Figure 13.7: Fitting the blank model (ℳ★
1 )

to the data.

Actually, we set up a simple linear regression model. This situation is
illustrated in Figure 13.5

13.1.4 Model without Effect of the Covariate

Alternatively, if we want to neglect the covariate G then we write

11 = 12 = . . . = 1� = � = 0 ,

leading to

.8 9 = � + 8 + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ�)

We actually find a one-factor ANOVA model, whose graphical repre-
sentation is given in Figure 13.6. A constraint is required to make it
identifiable, see Chapter 11 for examples of constraints.

13.1.5 Absence of any Effect

Finally, we can consider the sub-model in which neither the factor nor
the covariate affects our observations. This amounts to studying the
following blank or constant model:

.8 9 = � + �8 9 , where �8 9
8.8.3∼ (0, �2) . (ℳ★

1 )

Graphically, we try to fit a horizontal line to our data, as shown in Figure
13.7.

13.2 Estimation and Forecasting

Let G(8) = C
(
G81 . . . G8=8

)
, and .̄8 · and Ḡ8 · be the averages defined by:

I .̄8 · =
1
=8

=8∑
9=1

.8 9 the observed mean of level 8, and

I Ḡ8 · =
1
=8

=8∑
9=1

G8 9 the covariate mean of level 8.

13.2.1 Estimation in the Complete Model

Proposition 13.1 (Least squares estimation) In the model (ℳ★
2�), the 08

and 18 are estimated by

∀8 ∈ J1, �K ,


0̂8 = .̄8 · − Ḡ8 ·1̂8 ,

1̂8 =
Ĉ>E

(
.(8) , G(8)

)
V̂0A

(
G(8)

) .

They are normally distributed.
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Exercise 13.2 (Estimation for the regular model) In the case of the regular
model (ℳ★

2�), we can use the general formula �̂ = (C--)−1 C-.. Using the
fact that the matrix - is block diagonal, - = D 806

(
-(1) , . . . , -(�)

)
, show

that:

�̂ =

©«
(
C-(1)-(1)

)−1 C-(1).(1)
...(

C-(�)-(�)
)−1 C-(�).(�)

ª®®®¬
Deduce the estimators of 0̂8 and 1̂8 .

In R , we get:

> ancova.reg = lm(lm(final_weight ~ initial_weight * treatment

-1, data=oyster))

> summary(ancova.reg)

Call:

lm(formula = lm(final_weight ~ initial_weight * treatment - 1,

data = oyster))

Residuals:

Min 1Q Median 3Q Max

-0.68699 -0.28193 0.02184 0.10425 0.63075

Coefficients:

Estimate Std. Error t value Pr(>|t|)

initial_weight 0.98265 0.09588 10.249 1.27e-06 *

**
treatment1 5.24126 2.86473 1.830 0.0972 .

treatment2 -9.14932 8.70021 -1.052 0.3177

treatment3 4.81796 2.75927 1.746 0.1114

treatment4 4.29576 2.02339 2.123 0.0597 .

treatment5 -0.43183 2.13283 -0.202 0.8436

initial_weight:treatment2 0.51871 0.33406 1.553 0.1515

initial_weight:treatment3 0.07342 0.14699 0.499 0.6282

initial_weight:treatment4 0.07428 0.12229 0.607 0.5571

initial_weight:treatment5 0.24124 0.13980 1.726 0.1151

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5324 on 10 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9997

F-statistic: 6840 on 10 and 10 DF, p-value: < 2.2e-16

Listing 13.1: Estimation in the regular
model (ℳ★

2� )

In the case of the regular model, we can directly build confidence
intervals, perform tests, etc. In the case of the singular parameterization,
one must be more careful.
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Assume the default in R constraint 1 = �1 = 0. Using the link between
the parameters in regular model (ℳ★

2�) and the singular one (ℳ2�), we
can easily deduce that for all 8 ∈ J2, �K,

�̂ = 0̂1 = .̄1· − Ḡ1· �̂ ,
̂8 = 0̂8 − 0̂1 = .̄8 · − �̂ −

(
�̂8 + �̂

)
Ḡ8 · ,

�̂ = 1̂1 =
Ĉ>E

(
.(1) , G(1)

)
V̂0A

(
G(1)

) ,

�̂8 = 1̂8 − 1̂1 =
Ĉ>E

(
.(8) , G(8)

)
V̂0A

(
G(8)

) −
Ĉ>E

(
.(1) , G(1)

)
V̂0A

(
G((1)

) .

> ancova.sing = lm(lm(final_weight ~ initial_weight * treatment

-1, data=oyster))

> summary(ancova.sing)

Call:

lm(formula = lm(final_weight ~ initial_weight * treatment, data

= oyster))

Residuals:

Min 1Q Median 3Q Max

-0.68699 -0.28193 0.02184 0.10425 0.63075

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.24126 2.86473 1.830 0.0972

.

initial_weight 0.98265 0.09588 10.249 1.27e-06

***
treatment2 -14.39058 9.15971 -1.571 0.1472

treatment3 -0.42330 3.97747 -0.106 0.9174

treatment4 -0.94550 3.50725 -0.270 0.7930

treatment5 -5.67309 3.57150 -1.588 0.1433

initial_weight:treatment2 0.51871 0.33406 1.553 0.1515

initial_weight:treatment3 0.07342 0.14699 0.499 0.6282

initial_weight:treatment4 0.07428 0.12229 0.607 0.5571

initial_weight:treatment5 0.24124 0.13980 1.726 0.1151

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5324 on 10 degrees of freedom

Multiple R-squared: 0.9921, Adjusted R-squared: 0.985

F-statistic: 139.5 on 9 and 10 DF, p-value: 2.572e-09

Listing 13.2: Estimation in the singular
model (ℳ2� )

We predict the value of .8 9 using

.̂8 9 = 0̂8 + 1̂8G8 9 = �̂ + ̂8 + (�̂ + �̂8)G8 9 ,

which leads to the residuals

�8 9 = .8 9 − .̂8 9 = .8 9 − .̄8 · − 1̂8
(
G8 9 − Ḡ8 ·

)
.
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Proposition 13.3 The residual variance �2 is estimated by

�̂2 =
‖. − -�̂‖2
= − 2�

=
((�2�
= − 2�

.

Moreover, �̂2 is independent of �̂ and (= − 2�)�̂2 ∼ �"2(= − 2�).

In particular, we can define the error sum of squares ((�2� in the full
model by

((�2� =
�∑
8=1

�∑
9=1

(
.8 9 − .̄8 · − 1̂8

(
G8 9 − Ḡ8 ·

) )2

=

�∑
8=1

�∑
9=1

(
.8 9 − .̄8 ·

)2 −
�∑
8=1

�∑
9=1

1̂2
8

(
G8 9 − Ḡ8 ·

)2
.

13.2.2 Estimation in the Sub-Models

The only model we have not yet studied is the (ℳ�+1) ancova model
with effect of covariate, factor, but no intercation between the two.

13.2.2.1 Model without Interaction (ℳ�+1)

Recall that for all 8 ∈ J1, �K and 9 ∈ J1, =8K,

(ℳ�+1) : .8 9 = � + 8 + � G8 9 + �8 9 .

Proceeding in the same way as before, we can show that

∀8 ∈ J1, �K ,


0̂8 = �̂ + ̂8 = .̄8 · − Ḡ8 ·1̂ ,

1̂ = �̂ =

∑�
8=1 =8 Ĉ>E

(
.(8) , G(8)

)∑=8
8=1 =8V̂0A

(
G(8)

) .

In particular, the residual variance is now estimated by

�̂2 =
((��+1
= − � − 1

∼ �
= − � + 1

"2(= − � − 1) ,

where

((��+1 =
�∑
8=1

�∑
9=1

(
.8 9 − .̄8 ·

)2 − �̂2
�∑
8=1

�∑
9=1

(
G8 9 − Ḡ8 ·

)2
.

13.2.2.2 Model without Effect of the Factor

The model with no effect of the covariate (ℳ★
2 ) amounts to a linear

regression: For all 8 ∈ J1, �K and 9 ∈ J1, =8K,

(ℳ★
2 ) : .8 9 = � + � G8 9 + �8 9 + �8 9 .
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We thus obtain:

�̂ = .̄·· − �̂ Ḡ ·· and �̂ =
Ĉ>E (., G)
V̂0A (G)

.

The residual variance is estimated by

�̂2 =
((�2
= − 2

∼ �
= − 2

"2(= − 2) ,

where

((�2 =
�∑
8=1

�∑
9=1

(
.8 9 − .̄··

)2 − �̂2
�∑
8=1

�∑
9=1

(
G8 9 − Ḡ ··

)2
.

13.2.2.3 Model without Effect of the Covariate

The model with no effect of the covariate (ℳ�) amounts to a one-way
ANOVA model: For all 8 ∈ J1, �K and 9 ∈ J1, =8K,

(ℳ�) : .8 9 = � + 8 + �8 9 .

Hence, for all 8 ∈ J2, �K

�̂ = .̄1· and ̂8 = .̄8 · − .̄1· ,

under the R constraint 1 = 0.

The estimator of the variance is given by

�̂2 =
((��

= − � =
1

= − �
�∑
8=1

�∑
9=1

(
.8 9 − .̄8 ·

)2 ∼ �
= − � "

2(= − �) .

13.2.2.4 Absence of any Effect

The model writes
(ℳ★

1 ) : .8 9 = � + �8 9 ,

and we have the following estimations �̂ = .̄·· and

�̂2 =
((�1
= − 1

=

�∑
8=1

�∑
9=1

(
.8 9 − .̄··

)2 ∼ �
= − 1

"2(= − 1) .

13.3 Effect Test

We now have all the ingredients to test the relevance of the different
variables in the proposed ANCOVA model. For each of the tests, we
report the result we obtained using the R software.
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Remark 13.1 As with the ANOVA model, if there is an interaction
effect between the factor � and the covariate G, then their individual
effects must be included in the model.

13.3.1 Non-Interaction Between the Covariate and the
Factor

We want to establish whether the additive model without interaction

(ℳ�+1) : .8 9 = � + 8 + � G8 9 + �8 9

is an acceptable sub-model of the complete model with interaction

(ℳ2�) : .8 9 = � + 8 + (� + �8) G8 9 + �8 9 .

The Fisher statistic for this test is:

� =

((��+1 − ((�2�
� + 1
((�2�
= − 2�

�0∼ ℱ (� + 1, = − 2�) ,

and the rejection area is ℛ� = {� > 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ (� + 1, = − 2�).

Due to the graphical representation (Figure 13.4), we sometime refers to
this test as the test of homogeneity of the regression slopes.

> ancova.indep = lm(lm(final_weight ~ initial_weight+treatment,

data=oyster))

> anova(ancova.indep,ancova.sing)

Analysis of Variance Table

Model 1: final_weight ~ initial_weight + treatment

Model 2: final_weight ~ initial_weight * treatment

Res.Df RSS Df Sum of Sq F Pr(>F)

1 14 4.2223

2 10 2.8340 4 1.3883 1.2247 0.3602

13.3.2 No Effect of Factor �

We want to test if the linear regression model

(ℳ★
2 ) : .8 9 = � + � G8 9 + �8 9 + �8 9

is an acceptable sub-model of the additive model without interaction

(ℳ�+1) : .8 9 = � + 8 + � G8 9 + �8 9 .
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The Fisher statistic for this test is:

� =

((�2 − ((��+1
� − 1
((��+1
= − � − 1

�0∼ ℱ (� − 1, = − � − 1) ,

and the rejection area is ℛ� = {� > 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ (� − 1, = − � − 1).

> reglin = lm(lm(final_weight ~ initial_weight, data=oyster))

> anova(reglin,ancova.indep)

Analysis of Variance Table

Model 1: final_weight ~ initial_weight

Model 2: final_weight ~ initial_weight + treatment

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 16.3117

2 14 4.2223 4 12.089 10.021 0.0004819 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

13.3.3 No Effect of Covariate G

We want to test if the one-way anova model

(ℳ�) : .8 9 = � + 8 + �8 9

is an acceptable sub-model of the additive model without interaction

(ℳ�+1) : .8 9 = � + 8 + � G8 9 + �8 9 .

The Fisher statistic for this test is:

� =
((�� − ((��+1

((��+1
= − � − 1

�0∼ ℱ (1, = − � − 1) ,

and the rejection area is ℛ� = {� > 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ (1, = − � − 1).

> anova = lm(lm(final_weight ~ treatment, data=oyster))

> anova(anova,ancova.indep)

Analysis of Variance Table

Model 1: final_weight ~ treatment

Model 2: final_weight ~ initial_weight + treatment

Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 160.263

2 14 4.222 1 156.04 517.38 1.867e-12 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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1: Or of any of the model (ℳ�+1), (ℳ� )
of (ℳ★

2� ), but be careful to change the
degrees of freedom in the Fisher statistic
accordingly.

Remark 13.2 We could also perform a Student’s nullity test of the �
parameter in (ℳ�+1).

13.3.3.1 Absence of any Effect

We want to test if the blank model

(ℳ★
1 ) : .8 9 = � + �8 9

is an acceptable sub-model of the complete model1

(ℳ2�) : .8 9 = � + 8 + (� + �8) G8 9 + �8 9 .

The Fisher statistic for this test is:

� =

((�1 − ((�2�
2� − 1
((�2�
= − 2�

=

(('2�
2� − 1
((�2�
= − 2�

�0∼ ℱ (2� − 1, = − 2�) ,

and the rejection area is ℛ� = {� > 51−�}, where 51−� is the (1 − �)
quantile of the law ℱ (2� − 1, = − 2�).

> ancova.cst = lm(lm(final_weight ~ 1, data=oyster))

> anova(ancova.cst,ancova.sing)

Analysis of Variance Table

Model 1: final_weight ~ 1

Model 2: final_weight ~ initial_weight * treatment

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 358.67

2 10 2.83 9 355.84 139.51 2.572e-09 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Exercise 13.4 Using R output, which submodel is best suited to study oyster
culture data.

Remark 13.3 Like ANOVA, ANCOVA assumes equality of variances
for all groups. To conduct a rigorous study, we would have to check
this.
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2: Since the noise � has a null mean, �̄8 · =
.̄8 ·.

Figure 13.8: Classical (top) and adjusted
(bottom) means for � = 2 groups.

Figure 13.9: Estimated marginal means.

13.3.4 Comparison of Groups: Raw vs. Adjusted Means

In the ANCOVA model, the mean of group 8 is given by �̄8 ·:2

∀8 ∈ J1, �K , �̄8 · =
1
=8

=8∑
9=1
E[.8 9] = � + 8 +

(� + �8)
=8

=8∑
9=1

G8 9

= � + 8 + (� + �8) Ḡ8 · .

We note �̂8 · its estimate, obtained from the estimates of the different
parameters of the model: �̂8 · = �̂ + ̂8 + (�̂ + �̂8)Ḡ8 ·. For each group 8, it
corresponds to the response prediction when the covariate G is equal to
its mean Ḡ8 · for this group.
By comparing these different means �̄8 ·, we can compare the average
behavior of the different groups 8. However, with this definition of aver-
age behavior by group, a significant difference between these responses
may be the consequence of a significant difference in Ḡ8 · abscissae. In
particular, if this difference between abscissae is the result of poor sam-
pling, then using these means to compare groups is irrelevant. One way
to avoid this is to compare the difference in responses between groups
obtained for the same abscissa. A natural choice is the grandmean of the
covariate Ḡ ·· = 1

=

∑�
8=1

∑=8
9=1 G8 9 . This is referred to as the adjusted mean,

in the sense that it adjusts for, or is corrected by, the possible effect of
the covariate G:

�̃8 · = � + 8 + (� + �8) Ḡ ·· .
Figure 13.8 illustrates the difference between classical and adjusted
means.

Finally, in Figure 13.9, we represent the marginal means estimated by
the model, namely the quantities �̂+ ̂8 + (�̂ + �̂8) Ḡ ·· for each level, and
the observations associated with this treatment.
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A.2 Quantiles Tables . . . . . . . . . 176A.1 Summary Sheet on Non-Parametric Tests

For each test, we specify in brackets the pages where it was defined.

I Kolmogorov test (p. 26):

�= = sup
G∈R
|�̂=(G) − �0(G)| ;

I Kolmogorov-Smirnov test (p. 29):

�(=,<) = sup
G∈R
|�̂=(G) − �̂<(G)| ;

I Mann-Whitney test (p. 31):

*-<.

(=,<) =
=∑
8=1

<∑
9=1

1-8<.9 ;

I Wilcoxon test (p. 33):

,.

(=,<) =
<∑
9=1

' 9 ;

I Median test (p. 35):

"(=,<) =
1
<

<∑
9=1

1' 9> #+1
2

;

I Kolmogorov-Smirnov normality test (p. 39):

�= = sup
G∈R

��� �̂=(G) −Φ (
G; -̄ , (2

-

) ��� ;

I Shapiro-Wilk test (p. 42):

,= =
�̂=

(
C�−1

)2∑=
8=1(G8 − -̄)2

(
C�−2

) ;

I Chi-squared tests:

• Pearson’s fit test (p. 45):

)= =
 ∑
:=1

(#: − =?0
:
)2

=?0
:

;
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• Goodness-of-fit test (p. 47):

)̂= =
 ∑
:=1

(
#: − =?:(�̂)

)2

=?:(�̂)
;

• Independence test (p. 49):

�= =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ − #:, ·# ·,ℓ

=

)2

#:, ·# ·,ℓ
=

;

• Homogeneity test (p. 51):

�= =
 ∑
:=1

!∑
ℓ=1

(
#:,ℓ − #:, ·# ·,ℓ

=

)2

#:, ·# ·,ℓ
=

.

A.2 Quantiles Tables

Afterwards several usual quantiles tables are displayed.



Loi normale centrée réduite

Table de la fonction de répartition de U ∼ N (0, 1) :

P (U ≤ u) = F (u) =

∫ u

−∞

1√
2π

e−x2/2dx,

avec F (−u) = 1−F (u) et P (|U | ≤ u) = 2F (u)−1. u

F(u)

N(0,1)

u 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998



Loi de Student

Table de t en fonction du degré de liberté ν et
de la probabilité p tels que :

P (|Tν | > t) = p,

avec

Tν =
U√
Y/ν

où U ∼ N (0, 1) ⊥⊥ Y ∼ χ2(ν).
t−t

p/2 p/2

Tν

ν
p 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01

1 0.158 0.510 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657
2 0.142 0.445 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925
3 0.137 0.424 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841
4 0.134 0.414 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604
5 0.132 0.408 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032
6 0.131 0.404 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707
7 0.130 0.402 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499
8 0.130 0.399 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355
9 0.129 0.398 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250
10 0.129 0.397 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169
11 0.129 0.396 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106
12 0.128 0.395 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055
13 0.128 0.394 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012
14 0.128 0.393 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977
15 0.128 0.393 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947
16 0.128 0.392 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921
17 0.128 0.392 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898
18 0.127 0.392 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878
19 0.127 0.391 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861
20 0.127 0.391 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845
21 0.127 0.391 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831
22 0.127 0.390 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819
23 0.127 0.390 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807
24 0.127 0.390 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797
25 0.127 0.390 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787
26 0.127 0.390 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779
27 0.127 0.389 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771
28 0.127 0.389 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763
29 0.127 0.389 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756
30 0.127 0.389 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750
+∞ 0.12566 0.38532 0.67449 0.84162 1.03643 1.28155 1.64485 1.95996 2.32635 2.57583

La loi limite, lorsque ν tend vers l’infini, est une loi normale centrée réduite.



Loi du khi-deux

Table des quantiles de X ∼ χ2(n) :

P (X ≤ xn,p) = p.

xn,p

P(X ≤ xn,p) = p
χ2

(n)

n
p 0.005 0.01 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 0.99 0.995

1 0.00 0.00 0.00 0.00 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.95
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 20.84 25.34 30.43 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.19 46.96 49.64
28 12.46 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 52.29 59.33 66.98 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 100.4 104.2
80 51.17 53.54 57.15 60.39 64.28 71.14 79.33 88.13 96.58 101.9 106.6 112.3 116.3
90 59.20 61.75 65.65 69.13 73.29 80.62 89.33 98.65 107.6 113.1 118.1 124.1 128.3
100 67.33 70.06 74.22 77.93 82.36 90.13 99.33 109.1 118.5 124.3 129.6 135.8 140.1



Loi de Fisher

5 octobre 2011 5

A.4. Lois de Fisher–Snedecor (α � 0, 05)

Si F est une variable aléatoire suivant la loi de
Fisher–Snedecor à pν1, ν2q degrés de liberté, la table
donne la valeur f1�α telle quePtF ¥ f1�αu � α � 0,05.

Ainsi, f1�α est le quantile d’ordre 1 � α � 0,95 de la
loi de Fisher–Snedecor à pν1, ν2q degrés de liberté. f1−α0

α

ν2
ν1 1 2 3 4 5 6 8 10 15 20 30 8
1 161 200 216 225 230 234 239 242 246 248 250 254
2 18,5 19,0 19,2 19,2 19,3 19,3 19,4 19,4 19,4 19,4 19,5 19,5
3 10,1 9,55 9,28 9,12 9,01 8,94 8,85 8,79 8,70 8,66 8,62 8,53
4 7,71 6,94 6,59 6,39 6,26 6,16 6,04 5,96 5,86 5,80 5,75 5,63
5 6,61 5,79 5,41 5,19 5,05 4,95 4,82 4,74 4,62 4,56 4,50 4,36
6 5,99 5,14 4,76 4,53 4,39 4,28 4,15 4,06 3,94 3,87 3,81 3,67
7 5,59 4,74 4,35 4,12 3,97 3,87 3,73 3,64 3,51 3,44 3,38 3,23
8 5,32 4,46 4,07 3,84 3,69 3,58 3,44 3,35 3,22 3,15 3,08 2,93
9 5,12 4,26 3,86 3,63 3,48 3,37 3,23 3,14 3,01 2,94 2,86 2,71
10 4,96 4,10 3,71 3,48 3,33 3,22 3,07 2,98 2,85 2,77 2,70 2,54

11 4,84 3,98 3,59 3,36 3,20 3,09 2,95 2,85 2,72 2,65 2,57 2,40
12 4,75 3,89 3,49 3,26 3,11 3,00 2,85 2,75 2,62 2,54 2,47 2,30
13 4,67 3,81 3,41 3,18 3,03 2,92 2,77 2,67 2,53 2,46 2,38 2,21
14 4,60 3,74 3,34 3,11 2,96 2,85 2,70 2,60 2,46 2,39 2,31 2,13
15 4,54 3,68 3,29 3,06 2,90 2,79 2,64 2,54 2,40 2,33 2,25 2,07
16 4,49 3,63 3,24 3,01 2,85 2,74 2,59 2,49 2,35 2,28 2,19 2,01
17 4,45 3,59 3,20 2,96 2,81 2,70 2,55 2,45 2,31 2,23 2,15 1,96
18 4,41 3,55 3,16 2,93 2,77 2,66 2,51 2,41 2,27 2,19 2,11 1,92
19 4,38 3,52 3,13 2,90 2,74 2,63 2,48 2,38 2,23 2,16 2,07 1,88
20 4,35 3,49 3,10 2,87 2,71 2,60 2,45 2,35 2,20 2,12 2,04 1,84

22 4,30 3,44 3,05 2,82 2,66 2,55 2,40 2,30 2,15 2,07 1,98 1,78
24 4,26 3,40 3,01 2,78 2,62 2,51 2,36 2,25 2,11 2,03 1,94 1,73
26 4,23 3,37 2,98 2,74 2,59 2,47 2,32 2,22 2,07 1,99 1,90 1,69
28 4,20 3,34 2,95 2,71 2,56 2,45 2,29 2,19 2,04 1,96 1,87 1,65
30 4,17 3,32 2,92 2,69 2,53 2,42 2,27 2,16 2,01 1,93 1,84 1,62
40 4,08 3,23 2,84 2,61 2,45 2,34 2,18 2,08 1,92 1,84 1,74 1,51
50 4,03 3,18 2,79 2,56 2,40 2,29 2,13 2,03 1,87 1,78 1,69 1,44
60 4,00 3,15 2,76 2,53 2,37 2,25 2,10 1,99 1,84 1,75 1,65 1,39
80 3,96 3,11 2,72 2,49 2,33 2,21 2,06 1,95 1,79 1,70 1,60 1,32

100 3,94 3,09 2,70 2,46 2,31 2,19 2,03 1,93 1,77 1,68 1,57 1,288 3,84 3,00 2,60 2,37 2,21 2,10 1,94 1,83 1,67 1,57 1,46 1,00
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A.5. Lois de Fisher–Snedecor (α � 0, 025)

Si F est une variable aléatoire suivant la loi de
Fisher–Snedecor à pν1, ν2q degrés de liberté, la table
donne la valeur f1�α telle quePtF ¥ f1�αu � α � 0, 025.

Ainsi, f1�α est le quantile d’ordre 1� α � 0,975 de la
loi de Fisher–Snedecor à pν1, ν2q degrés de liberté. f1−α0

α

ν2
ν1 1 2 3 4 5 6 8 10 15 20 30 8
1 648 800 864 900 922 937 957 969 985 993 1 001 1 018
2 38,5 39,0 39,2 39,2 39,3 39,3 39,4 39,4 39,4 39,4 39,5 39,5
3 17,4 16,0 15,4 15,1 14,9 14,7 14,5 14,4 14,3 14,2 14,1 13,9
4 12,2 10,6 9,98 9,60 9,36 9,20 8,98 8,84 8,66 8,56 8,46 8,26
5 10,0 8,43 7,76 7,39 7,15 6,98 6,76 6,62 6,43 6,33 6,23 6,02
6 8,81 7,26 6,60 6,23 5,99 5,82 5,60 5,46 5,27 5,17 5,07 4,85
7 8,07 6,54 5,89 5,52 5,29 5,12 4,90 4,76 4,57 4,47 4,36 4,14
8 7,57 6,06 5,42 5,05 4,82 4,65 4,43 4,30 4,10 4,00 3,89 3,67
9 7,21 5,71 5,08 4,72 4,48 4,32 4,10 3,96 3,77 3,67 3,56 3,33
10 6,94 5,46 4,83 4,47 4,24 4,07 3,85 3,72 3,52 3,42 3,31 3,08

11 6,72 5,26 4,63 4,28 4,04 3,88 3,66 3,53 3,33 3,23 3,12 2,88
12 6,55 5,10 4,47 4,12 3,89 3,73 3,51 3,37 3,18 3,07 2,96 2,72
13 6,41 4,97 4,35 4,00 3,77 3,60 3,39 3,25 3,05 2,95 2,84 2,60
14 6,30 4,86 4,24 3,89 3,66 3,50 3,29 3,15 2,95 2,84 2,73 2,49
15 6,20 4,76 4,15 3,80 3,58 3,41 3,20 3,06 2,86 2,76 2,64 2,40
16 6,12 4,69 4,08 3,73 3,50 3,34 3,12 2,99 2,79 2,68 2,57 2,32
17 6,04 4,62 4,01 3,66 3,44 3,28 3,06 2,92 2,72 2,62 2,50 2,25
18 5,98 4,56 3,95 3,61 3,38 3,22 3,01 2,87 2,67 2,56 2,44 2,19
19 5,92 4,51 3,90 3,56 3,33 3,17 2,96 2,82 2,62 2,51 2,39 2,13
20 5,87 4,46 3,86 3,51 3,29 3,13 2,91 2,77 2,57 2,46 2,35 2,09

22 5,79 4,38 3,78 3,44 3,22 3,05 2,84 2,70 2,50 2,39 2,27 2,00
24 5,72 4,32 3,72 3,38 3,15 2,99 2,78 2,64 2,44 2,33 2,21 1,94
26 5,66 4,27 3,67 3,33 3,10 2,94 2,73 2,59 2,39 2,28 2,16 1,88
28 5,61 4,22 3,63 3,29 3,06 2,90 2,69 2,55 2,34 2,23 2,11 1,83
30 5,57 4,18 3,59 3,25 3,03 2,87 2,65 2,51 2,31 2,20 2,07 1,79
40 5,42 4,05 3,46 3,13 2,90 2,74 2,53 2,39 2,18 2,07 1,94 1,64
50 5,34 3,98 3,39 3,06 2,83 2,67 2,46 2,32 2,11 1,99 1,87 1,55
60 5,29 3,93 3,34 3,01 2,79 2,63 2,41 2,27 2,06 1,94 1,82 1,48
80 5,22 3,86 3,28 2,95 2,73 2,57 2,36 2,21 2,00 1,88 1,75 1,40

100 5,18 3,83 3,25 2,92 2,70 2,54 2,32 2,18 1,97 1,85 1,71 1,358 5,02 3,69 3,12 2,79 2,57 2,41 2,19 2,05 1,83 1,71 1,57 1,00
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