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Introduction

We observe n individuals described by p variables: xi =
(
xi1, xi2, . . . , xip

)
∈ X

X =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp


X = Rp , ]−π, π]p , . . . Quantitative variables!

• Initial measurements
• Transformed measurements
• Coordinates after dimension reduction

• Let d be the Euclidean distance: d(x, y) = ‖x− y‖2

• Goal of k-means algorithm: Find a partition of the individuals that minimizes
the intra-class inertia, i.e. the within-cluster sum of squares (WCSS)

P̂ k−means
K ∈ argmin

PK

K∑
k=1

∑
i∈Ck

d(µk, xi)2 where µk = 1
|Ck|

∑
i∈Ck

xi

PK = {C1, . . . , CK} partition of J1, nK
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k-means algorithm [MacQueen, 1967, Steinhaus, 1957]

Initialization: • Choice of the number of classes K
• Choice of K initial centroids µ(0)

1 , . . . , µ
(0)
K

Iteration t: Repeat:
Allocation update: Point i allocated to the nearest centroid

i ∈ C(t)
k such that d

(
xi, µ

(t−1)
k

)
= min

`∈J1,KK
d
(
xi, µ

(t−1)
`

)
Centroids update: Centroid as the new class mean

µ
(t)
k = 1

|C(t)
k |

∑
i∈C(t)

k

xi
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Assymptotic Behavior of the k-means Algorithm

Proposition

The intra-class inertia IIntra

(
P(t)

K

)
decreases with each step.

; Convergence of the k-means algorithm towards a local minimum of the
intra-class inertia.

Sketch of the proof: (Demonstration will be covered in tutorials)

Two key arguments:

1. If point i goes from C(t−1)
k to C(t)

` , then:

d
(
xi, µ

(t)
`

)2
6 d
(
xi, µ

(t−1)
k

)2

2. µ(t)
k being the gravity center of C(t)

k ,∑
i∈C(t)

k

d
(
xi, µ

(t)
k

)2
6
∑

i∈C(t)
k

d
(
xi, µ

(t−1)
k

)2
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Strengths and Weaknesses

Pros: • Relatively efficient (fast),
• Tends to reduce intra-class inertia at each iteration,
• Forms compact and well-separated classes.

Cons: • Influence of the choice of initial centroids,
• Convergence to a local minimum,
• Requires the notion of center of gravity,
• Influence of outliers (due to averaging),
• Not suitable for non-convex classes.

Best result obtained by the k-means algorithm, on 10 runs.
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Variants of the k-means

k-medoids: More efficient on small dataset, more robust in the presence of
noise or outliers.
Idea: Use medoids instead of centroids, i.e. points from X.

νk ∈ argmin
y∈X

∑
i∈Ck

d(y, xi)2

k-modes: For qualitative data.
(i) Modify the dissimilarity measure to handle qualitative data.

d(xa, xb) =
p∑

j=1

naj + nbj

naj × nbj
1{xaj 6=xbj}

where naj = #{i ∈ J1, nK | xaj = xij}.

(ii) Use of modes instead of centers of gravity.

Remark: For qualitative data, we can also use k-means algorithm on multiple
correspondence analysis (MCA).
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Dogs Breeds: k-modes vs k-means+MCA

Analysis of 27 dog breeds based on 6 descriptive qualitative: size (3), weight (3),
velocity (3), intelligence (3), affection (2) and aggressiveness (2).

MCA MCA + k-means MCA + k-modes

7
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Choice of the Number of Classes K

• Elbow method for the intra-class inertia IIntra

• For each value of K ∈ {2, . . . , Kmax}, we obtain a classification PK ,
• We select the one where we observe a significant jump in intra-class inertia.

• Other criteria based on inertia
• R-Square: RSQ(K) =

IInter(PK)
IT ot

= 1−
IIntra(PK)

IT ot
K: Elbow on the RSQ curve.

• Semi-Partial R-Square: SPRSQ(K) =
IInter(PK)− IInter(PK−1)

IT ot
K: largest reduction of the QSPRS.

• Calinski-Harabasz (CH): PseudoF (K) =
IInter(PK)
IIntra(PK)

×
n−K
K − 1

K: Peak on the CH curve.
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Silhouette Score

s(i) = b(i)− a(i)
max

(
a(i), b(i)

) where


a(i) =

1
|Ck| − 1

∑
j∈Ck,j 6=i

d(xi, xj) (cohesion) ,

b(i) = min
6̀=k

1
|C`|

∑
j∈C`

d(xi, xj) (separation) .

• The better the classification, the closer the silhouette score is to 1
• Negative score in case of bad classification 9



Choice of Initial Centriods

Initialization 1 Initialization 2

• A judicious choice can favour the convergence towards a global minimum!

• Selection based on additional knowledge,
or on a preliminary study of the data: histograms, etc.

• Repeat the method N times, and select the partition PK with the lowest
intra-class inertia.

10



Choice of Initial Centriods [Arthur and Vassilvitskii, 2006]

Forgy Initialization Random Partition Method k-means++

Any K points from
the data, at random.

• Random assignment of
a cluster ID to each
data point,
• Average by ID of the
points.

Not a good choice
for k-means!

• Choose a random point,
• Next centroid so that it lies

at a large distance from the
first one, with high
probability: Sample a point
from a probability distrib.
proportional to the distance
to the first centroid,

• Remaining pts generated by
a probability disctrib.
proportional to the distance
of each point from its nearest
center.

11
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DBSCAN: Density-Based Spatial Clustering
of Applications with Noise

2.1 Principle of DBSCAN methods
2.2 Choice of hyper-parameters



DBSCAN Algorithm [Ester et al., 1996]

• Two key parameters:
ε: The distance that specifies the neighborhoods.

Two points are considered to be neighbors if the distance
between them are less than or equal to ε.

MinPts: Minimum number of data points to define a cluster.

• Algorithmic steps for DBSCAN clustering:
1. Arbitrarily picking up a point in the dataset (until all points have been visited).

2. If there are at least MinPts points within a radius of ε to the point then we
consider all these points to be part of the same cluster.

3. The clusters are then expanded by recursively repeating the neighborhood
calculation for each neighboring point

See aaronscotthq.com/2020-05-28-scott_dbscan for an animation.

12
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DBSCAN Algorithm

Points classified as core point, border point, or outlier:

Core point: There are at least MinPts number of points (including itself) in its
ε-neighborhood:

#{i ∈ J1, nK | d(xa, xi) < ε} >MinPts .

Border point: Belongs to the ε-neighborhood
of a core point, but is not a
central point (not enough dense
neighborhood).

Outlier: Neither a central point nor a
border point
(In particular, not classified).

13



Strengths and Weaknesses

Pros: • Does not require to specify number of clusters beforehand,
• Performs well with clusters of arbitrary shapes,
• Robust to outliers and able to detect them.

Cons: • In some cases, determining an appropriate neighborhood
distance ε is not easy and requires domain knowledge,

• Not well suited if the clusters are very different from each
other in terms of intra-cluster densities.
Characteristics of the clusters defined by the combination ε − MinP ts, and
we pass only one couple ε − MinP ts to the algorithm.
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Determining Minimum Samples MinPts

MinP ts = 2, ε = 0.1 MinP ts = 4, ε = 0.1 MinP ts = 6, ε = 0.1 MinP ts = 8, ε = 0.1

MinPts: to be defined using domain knowledge and familiarity with the data set.

• MinPts > p+ 1,

• The larger the data set, the larger MinPts,

• The noisier the data set, the larger MinPts,

• For 2d data, use DBSCAN’s default value of MinPts = 4 [Ester et al., 1996]

• For more than 2d data, choose MinPts = 2p [Sander et al., 1998],
or MinPts = ln(n).

15



Determining the distance ε

MP ts = 4, ε = 0.09 MP ts = 4, ε = 0.10 MP ts = 4, ε = 0.11 MP ts = 4, ε = 0.12

ε: Based on the average distance between each point and its MinPts nearest
neighbors (MinPts−NN distance)

• For each point of the dataset, compute its
MinPts−NN distance,

• Plot this distances in ascending,

• We choose ε as the value of the
MinPts−NN distance where an “elbow”
is observed (maximum curvature).
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