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What is clustering? Why is it used?
Principle and First Examples



Supervised vs. Unsupervised Classification

Cluster Analysis

From Wikipedia, the free encyclopedia

Cluster analysis or clust
ering is the task of grouping a set of objects in such

a way that objects in the same group (called a cluster) are more similar (in

some sense) to each other than to those in other groups (clusters).

Images from www.g2.com/articles/supervised-vs-unsupervised-learning

Supervised classification Unsupervised classification 2

https://www.g2.com/articles/supervised-vs-unsupervised-learning


Toy Dataset – Python notebook available on Moodle

1 n_points = 100
2 data , labels = make_blobs ( n_samples =n_points , n_features =2, centers =3,

cluster_std =1, center_box =[-10 ,10])

1 sns. scatterplot (x=data[:, 0],
y=data[:, 1])

2 plt.show ()

1 sns. scatterplot (x=data[:, 0],
y=data[:, 1],
hue= labels )

2 plt.show ()
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Some Applications in Real Life

• Recommendation systems

• Image segmentation: Tumor identification, Ecological studies, etc.

See www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html

• Unsupervised robotic sorting: Garbage-sorting bot, etc.
See The Everyday Robot Project from Alphabet

• Data-driven discovery of new chemicals

• Unsupervised image/signal classification
4
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Principle of Clustering

We observe n individuals described by p variables: xi =
(
xi1, xi2, . . . , xip

)
∈ X

X =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp


X = Rp , {0, 1}p , ]−π, π]p , Rq ×{0, 1}p−q , . . .

• Initial measurements
• Transformed measurements
• Coordinates after dimension reduction

Classification: Partitioning a collection of heterogeneous
individuals into a set of homogeneous classes.

Unsupervised: No a priori partition of the n individuals,
Number of classes K unknown.

Set of data points on
which we do not know
the labels, but that we
want to group together in
a smart way.

=⇒ Determine K classes PK = {C1, . . . , CK} of the n individuals from X such
that a class is a collection of individuals:

• similar to each other, and
• dissimilar to the individuals of the other classes (well separated classes).
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Inertia (for Quantitative Data)

• Assume quantitative variables and dq the Minkowski distance,
i.e. the distance associated to the norm ‖·‖q .
• Let a partition PK = {C1, . . . , CK} into K classes.

Total inertia Total variance

IT ot =
n∑

i=1

d(µ, xi)q
Let µ =

1
n

n∑
i=1

xi,

center of gravity of the point cloud.

Interclass inertia Variance of class centers

IInter =
K∑

k=1

|Ck| d(µ, µk)q

Let µk =
1
|Ck|

∑
i∈Ck

xi,

center of gravity of the class Ck.

Intraclass inertia Variance of points in the same class

IIntra =
K∑

k=1

∑
i∈Ck

d(µk, xi)q
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Inertia (for Quantitative Data)

• Assume quantitative variables and d2 the Euclidean distance,
i.e. the distance associated to the norm ‖·‖2.
• Let a partition PK = {C1, . . . , CK} into K classes.

Total inertia Total variance

IT ot =
n∑

i=1

d(µ, xi)2
Let µ =

1
n

n∑
i=1

xi,

center of gravity of the point cloud.

Interclass inertia Variance of class centers

IInter =
K∑

k=1

|Ck| d(µ, µk)2

Let µk =
1
|Ck|

∑
i∈Ck

xi,

center of gravity of the class Ck.

Intraclass inertia Variance of points in the same class

IIntra =
K∑

k=1

∑
i∈Ck

d(µk, xi)2
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Huygens’ Principle

IT ot = IInter + IIntra

Demonstration: Pythagorean theorem

Principle of clustering: Minimize intraclass inertia
⇐⇒ Maximize interclass inertia

Remark:
IInter = BCSS

IIntra = WCSS

Images: Bisson, 2001
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Impossibility of an Exhaustive Search

Disclaimer : Here, we only deal with “hard classification” methods: an individual
belongs to only one class, i.e.

∀i ∈ J1, nK, ∃!k ∈ J1,KK such that i ∈ Ck .

Stirling numbers of the second kind : Number of ways to partition a set of n
elements into K nonempty subsets

S(n,K) =
{
n

K

}
= 1
K!

K∑
j=0

(−1)K−jjn

(
K

j

)
.

→ S(100, 3) ' 1047 partitions of n = 100 individuals into K = 3 classes,
→ S(100, 5) ' 1068 partitions of n = 100 individuals into K = 5 classes.

; Impossibility of an Exhaustive Search.
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Quantify the Dissimilarity

• Clustering methods requires to be able to quantify the dissimilarity between
observations.

; Appropriate dissimilarities and distances

• Quantitative data: Minkowski distance, Euclidean distance, Mahalanobis, etc.

• Qualitative data: Rogers and Tanimoto dissimilarity, simple dissimilarity, etc.

Example: Let x, y categorical with p features. d(x, y) =
p∑

j=1

1{xj 6=yj}

• Mixed data: Gower metric, etc.

• Dimension curse: Beware of the behavior of distances in large dimensions!
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How to evaluate it?
Tools to Evaluate and Compare Clusters



How to Evaluate Clustering Results?

(T ) Ground truth (R) Random,
K = 3 classes

(C2) K = 2 classes (C20) K = 20 classes

Internal metrics: Real situation
No need to know the ground truth.

• Silhouette coefficient,
• Davies–Bouldin index,
• Dunn Index,
• R-Square (RSQ) and Semi-Partial
R-Square (SPRSQ) criteria,
• Calinski-Harabasz score.

External metrics:
Specific clustering metrics when ground
truth is known.

• Purity,
• Clustering accuracy,
• Folkes-Mallows index,
• Normalized Mutual Information.

10



How to Evaluate Clustering Results?

(T ) Ground truth (R) Random,
K = 3 classes

(C2) K = 2 classes (C20) K = 20 classes

Internal metrics: Real situation
No need to know the ground truth.

• Silhouette coefficient,
• Davies–Bouldin index,
• Dunn Index,
• R-Square (RSQ) and Semi-Partial
R-Square (SPRSQ) criteria,
• Calinski-Harabasz score.

External metrics:
Specific clustering metrics when ground
truth is known.

• Purity,
• Clustering accuracy,
• Folkes-Mallows index,
• Normalized Mutual Information.

10



How to Evaluate Clustering Results?

(T ) Ground truth (R) Random,
K = 3 classes

(C2) K = 2 classes (C20) K = 20 classes

Internal metrics: Real situation
No need to know the ground truth.

• Silhouette coefficient,
• Davies–Bouldin index,
• Dunn Index,
• R-Square (RSQ) and Semi-Partial
R-Square (SPRSQ) criteria,
• Calinski-Harabasz score.

External metrics:
Specific clustering metrics when ground
truth is known.

• Purity,
• Clustering accuracy,
• Folkes-Mallows index,
• Normalized Mutual Information.

10



Example of Internal Metric: Silhouette Coefficient

Let xi, where i ∈ Ck. n points, K clusters.

• Cohesion: Mean distance between xi and other
points in Ck:

a(i) = 1
|Ck| − 1

∑
j∈Ck,j 6=i

d(xi, xj)

• Separation: Mean distance between xi and the
points of the closest other clusters:

b(i) = min
6̀=k

1
|C`|

∑
j∈C`

d(xi, xj)

; Silhouette score:

• Point xi: s(i) ∈ [−1, 1]

s(i) = b(i)− a(i)
max

(
a(i), b(i)

)
• Entire dataset:

S = 1
n

n∑
i=1

s(i)

= 1
K

K∑
k=1

1
|Ck|

∑
i∈Ck

s(i)

(T ) (R) (C2) (C20)

Silhouette 0.83 -0.03 0.66 0.39

Function silhouette_score from
the sklearn.metrics package.
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Inertia-Based Criteria

Let a partition PK .

• R-Square: RSQ(PK) = IInter(PK)
IT ot

= 1− IIntra(PK)
IT ot

• Semi-Partial R-Square: SPRSQ(PK) = IInter(PK)− IInter(PK−1)
IT ot

• Calinski-Harabasz (CH): PseudoF (PK) = IInter(PK)
IIntra(PK) ×

n−K
K − 1

(T ) (R) (C2) (C20)

Silhouette 0.83 -0.03 0.66 0.39
Calinski-Harabasz 1549.85 0.03 225.78 1009.70
Davies-Bouldin 0.24 64.40 0.45 0.66
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Example of External Metric: Purity

Let P?
L = {C?

1 , . . . , C?
K?} be the ground truth partition, n points.

Consider a partition PK = {C1, . . . , CK}.

Purity(PK) = 1
n

K∑
k=1

max
`∈J1,K?K

|C?
` ∩ Ck|

(T ) (R) (C2) (C20)

Silhouette 0.83 -0.03 0.66 0.39
Calinski-Harabasz 1549.85 0.03 225.78 1009.70
Davies-Bouldin 0.24 64.40 0.45 0.66
Purity score 1 0.36 0.67 1

Issue: More clusters, better score.
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How to evaluate it?
Tools to Evaluate and Compare Clusters



How to Compare two Clusterings?

Let us suppose that we have obtained two partitions from the same data :

PK = {C1, . . . , CK} and QL = {D1, . . . ,DL}

Question: How to compare these two classifications?

• Contingency table,
• Rand Index (RI) and Adjusted Rand Index (ARI),
• Variation of information,
• . . .

(T ) Ground truth

vs.

(R) Random,
K = 3 classes

vs.

(C2) K = 2 classes
14



(Adjusted) Rand Index

PK vs. QL Grouped in PK Separated in QL

Grouped in PK a b
Separated in QL c d

a+ b: Agreements
between PK and QL.
c+ d: Disagreements.

• Rand Index: Proportion of point pairs that are
grouped in the same way in both partitions. RI(PK , QL) = a+ d

a+ b+ c+ d

• Adjusted Rand Index: Let nk` = |Ck ∩ D`|, nk+ =
L∑

`=1

nk`, n+` =
K∑

k=1

nk`.

• RI =
∑

k`

(nk`

2
)

• E[RI] =

∑
k

(
nk+

2

)
×
∑

`

(
n+`

2

)(
n
2

) ,

Indices obtained by randomly partitioning the data

• max(RI) =
1
2

(∑
k

(nk+
2
)

+
∑

`

(n+`

2
))

ARI(PK , QL) = RI − E[RI]
max(RI)− E[RI]

The closer the ARI is to 1,
the more similar the two
partitions are.
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Contingency Table

• Contingency table to observe if classes are shared, split, etc.

nk` = |Ck ∩ D`|

= # {i ∈ J1, nK | i ∈ Ck ∩ D`}

nk+ =
L∑

`=1

nk`

n+` =
K∑

k=1

nk`

PK vs. QL D1 D2 . . . DL Sums

C1 n11 n12 . . . n1L n1+

C2 n21 n22 . . . n2L n2+

...
...

...
. . .

...
...

CK nK1 nK2 . . . nKL nK+

Sums n+1 n+2 . . . n+L n

(T ) vs. (R) (T ) vs. (C2) (R) vs. (C2)

Functions confusion_matrix and ConfusionMatrixDisplay from sklearn.metrics.
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How to choose a clustering algorithm?
Course Outline



A Variety of Methods

• Clustering methods distinguish by:
• Type of “similarity” between individuals:

Distance, probability distribution, shape, etc.
• Type of “partitioning”: Hard or fuzzy clustering.

• Various categories of methods:
• Distance-based,
• Connectivity-based,
• Density-based,
• etc.

From: scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html 17
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Different Families of Clustering Algorithms

Distance-based Connectivity-based Density-based

Pros
• Can conduct inference

on new data points
• Usually fast

• Does not need access
to data points values
(only distances)

• Can handle non
linearly separated
clusters

• Does not need access
to data points values

• Can handle non
linearly separable
clusters

• Does not need
number of clusters

• Can handle outliers

Cons

• Number of clusters
required

• No outlier detection
• Need access to point

values

• Number of clusters
required

• No outlier detection
• Usually slow
• Cannot conduct

inference

• Usually slow
• Cannot be used for

inference

Example K-means Hierarchical clustering DBSCAN
18
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