# **Unsupervised Classification**

Introduction to Clustering

Data Analysis – juliette.chevallier@insa-toulouse.fr INSA Toulouse, Applied Mathematics, 4th year

1. What is clustering? Why is it used? Principle and First Examples

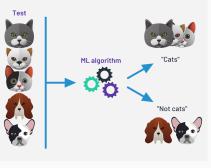
2. How to evaluate it? Tools to Evaluate and Compare Clusters

- 2.1 Intrinsic Quality of a Partition
- 2.2 Comparison Between two Partitions
- 3. How to choose a clustering algorithm? Course Outline

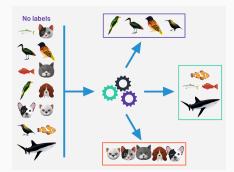
What is clustering? Why is it used? *Principle and First Examples* 

## Supervised vs. Unsupervised Classification

# Cluster Analysis From Wikipedia, the free encyclopedia Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).



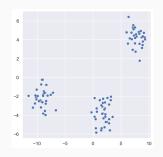
Supervised classification



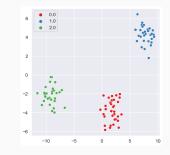
 ${\sf Images from www.g2.com/articles/supervised-vs-unsupervised-learning}$ 

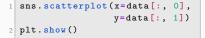
#### Unsupervised classification

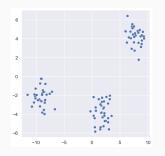
#### Toy Dataset – Python notebook available on Moodle



#### Toy Dataset – Python notebook available on Moodle







## Some Applications in Real Life

Recommendation systems



• Image segmentation: Tumor identification, Ecological studies, etc.





See www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html

• Unsupervised robotic sorting: Garbage-sorting bot, etc.

See The Everyday Robot Project from Alphabet

- Data-driven discovery of new chemicals
- Unsupervised image/signal classification



#### Principle of Clustering

We observe n individuals described by p variables:  $x_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X}$ 

 $X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n2} & x_{n2} & \dots & x_{np} \end{pmatrix}$ • Initial measurements
• Transformed measurements
• Coordinates after dimension reduction

 $\mathcal{X} = \mathbb{R}^p$ ,  $\{0,1\}^p$ ,  $[-\pi,\pi]^p$ ,  $\mathbb{R}^q \times \{0,1\}^{p-q}$ ,...

## **Principle of Clustering**

We observe n individuals described by p variables:  $x_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X}$ 

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

 $\mathcal{X} = \mathbb{R}^p$ ,  $\{0,1\}^p$ ,  $]-\pi,\pi]^p$ ,  $\mathbb{R}^q \times \{0,1\}^{p-q}$ ,...

- Initial measurements
- Transformed measurements
- Coordinates after dimension reduction

**Classification:** Partitioning a collection of *heterogeneous* individuals into a set of *homogeneous* classes.

**Unsupervised:** No *a priori* partition of the n individuals, Number of classes K unknown. Set of data points on which we do not know the labels, but that we want to group together in a smart way.

## **Principle of Clustering**

We observe n individuals described by p variables:  $x_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X}$ 

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

 $\mathcal{X} = \mathbb{R}^p$ ,  $\{0,1\}^p$ ,  $]-\pi,\pi]^p$ ,  $\mathbb{R}^q \times \{0,1\}^{p-q}$ ,...

- Initial measurements
- Transformed measurements
- Coordinates after dimension reduction

**Classification:** Partitioning a collection of *heterogeneous* individuals into a set of *homogeneous* classes.

**Unsupervised:** No *a priori* partition of the n individuals, Number of classes K unknown. Set of data points on which we do not know the labels, but that we want to group together in a smart way.

 $\implies$  Determine K classes  $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$  of the *n* individuals from X such that a **class** is a collection of individuals:

- similar to each other, and
- dissimilar to the individuals of the other classes (well separated classes).

#### Inertia (for Quantitative Data)

- Assume quantitative variables and d<sub>q</sub> the Minkowski distance, i.e. the distance associated to the norm ||·||<sub>q</sub>.
- Let a partition  $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$  into K classes.

Total inertia Total variance

$$I_{Tot} = \sum_{i=1}^{n} d(\mu, x_i)^q$$

Let 
$$\mu = rac{1}{n} \sum_{i=1}^n x_i$$
,

center of gravity of the *point cloud*.

Interclass inertia Variance of class centers

$$I_{Inter} = \sum_{k=1}^{K} |\mathcal{C}_k| \, d(\mu, \mu_k)^q$$

Let 
$$\mu_k = rac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i$$
 ,

center of gravity of the *class*  $C_k$ .

Intraclass inertia Variance of points in the same class

$$I_{Intra} = \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_k} d(\mu_k, x_i)^q$$

#### Inertia (for Quantitative Data)

- Assume quantitative variables and d<sub>2</sub> the Euclidean distance, i.e. the distance associated to the norm ||·||<sub>2</sub>.
- Let a partition  $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$  into K classes.

Total inertia Total variance

$$I_{Tot} = \sum_{i=1}^{n} d(\boldsymbol{\mu}, \boldsymbol{x}_i)^2$$

Let 
$$\mu = rac{1}{n}\sum_{i=1}^n x_i$$
,

center of gravity of the *point cloud*.

Interclass inertia Variance of class centers

$$I_{Inter} = \sum_{k=1}^{K} |\mathcal{C}_k| \, d(\mu, \mu_k)^2$$

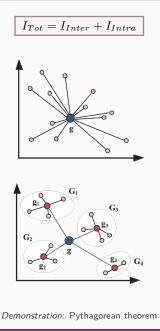
Let 
$$\mu_k = rac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i$$
 ,

center of gravity of the *class*  $C_k$ .

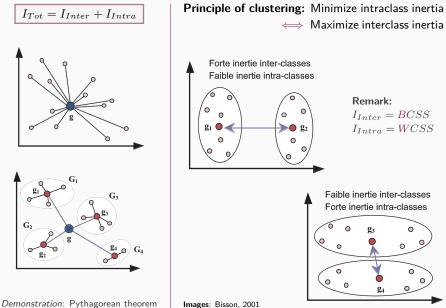
Intraclass inertia Variance of points in the same class

$$I_{Intra} = \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_k} d(\mu_k, x_i)^2$$

## Huygens' Principle



## Huygens' Principle



## Impossibility of an Exhaustive Search

**Disclaimer**: Here, we only deal with "hard classification" methods: an individual belongs to only one class, *i.e.* 

```
\forall i \in [\![1,n]\!], \quad \exists !k \in [\![1,K]\!] \text{ such that } i \in \mathcal{C}_k.
```

*Stirling numbers of the second kind*: Number of ways to partition a set of n elements into K nonempty subsets

$$S(n,K) = {n \\ K} = \frac{1}{K!} \sum_{j=0}^{K} (-1)^{K-j} j^n {K \choose j}.$$

 $\rightarrow S(100,3) \simeq 10^{47}$  partitions of n = 100 individuals into K = 3 classes,  $\rightarrow S(100,5) \simeq 10^{68}$  partitions of n = 100 individuals into K = 5 classes.

→ Impossibility of an Exhaustive Search.

## Quantify the Dissimilarity

• Clustering methods requires to be able to quantify the dissimilarity between observations.

 $\rightsquigarrow$  Appropriate dissimilarities and distances

## Quantify the Dissimilarity

 Clustering methods requires to be able to quantify the dissimilarity between observations.

 $\rightsquigarrow$  Appropriate dissimilarities and distances

- Quantitative data: Minkowski distance, Euclidean distance, Mahalanobis, etc.
- Qualitative data: Rogers and Tanimoto dissimilarity, simple dissimilarity, *etc. Example*: Let x, y categorical with p features.  $d(x,y) = \sum_{j=1}^{p} \mathbb{1}_{\{x_j \neq y_j\}}$
- Mixed data: Gower metric, etc.

### Quantify the Dissimilarity

 Clustering methods requires to be able to quantify the dissimilarity between observations.

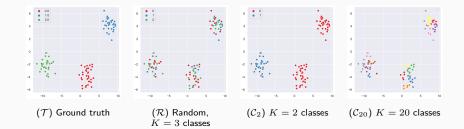
 $\rightsquigarrow$  Appropriate dissimilarities and distances

- Quantitative data: Minkowski distance, Euclidean distance, Mahalanobis, etc.
- Qualitative data: Rogers and Tanimoto dissimilarity, simple dissimilarity, etc. Example: Let x, y categorical with p features.  $d(x,y) = \sum_{j=1}^{p} \mathbb{1}_{\{x_j \neq y_j\}}$
- Mixed data: Gower metric, etc.

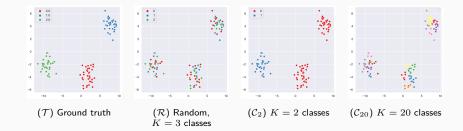
• Dimension curse: Beware of the behavior of distances in large dimensions!

How to evaluate it? Tools to Evaluate and Compare Clusters

## How to Evaluate Clustering Results?



#### How to Evaluate Clustering Results?

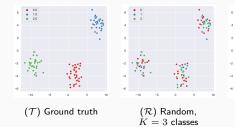


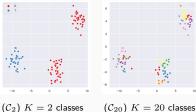
**Internal metrics:** *Real situation* No need to know the ground truth.

#### **External metrics:**

Specific clustering metrics when ground truth is known.

#### How to Evaluate Clustering Results?





**Internal metrics:** *Real situation* No need to know the ground truth.

- Silhouette coefficient,
- Davies–Bouldin index,
- Dunn Index,
- *R*-Square (*RSQ*) and Semi-Partial R-Square (*SPRSQ*) criteria,
- Calinski-Harabasz score.

#### **External metrics:**

Specific clustering metrics when ground truth is known.

- Purity,
- Clustering accuracy,
- Folkes-Mallows index,
- Normalized Mutual Information.

#### Example of Internal Metric: Silhouette Coefficient

Let  $x_i$ , where  $i \in C_k$ . n points, K clusters.

• Cohesion: Mean distance between  $x_i$  and other points in  $C_k$ :

$$a(i) = \frac{1}{|\mathcal{C}_k| - 1} \sum_{j \in \mathcal{C}_k, j \neq i} d(x_i, x_j)$$

• **Separation**: Mean distance between  $x_i$  and the points of the closest other clusters:

$$b(i) = \min_{\ell \neq k} \frac{1}{|\mathcal{C}_{\ell}|} \sum_{j \in \mathcal{C}_{\ell}} d(x_i, x_j)$$

#### Example of Internal Metric: Silhouette Coefficient

Let  $x_i$ , where  $i \in C_k$ . n points, K clusters.

• **Cohesion**: Mean distance between  $x_i$  and other points in  $C_k$ :

$$a(i) = \frac{1}{|\mathcal{C}_k| - 1} \sum_{j \in \mathcal{C}_k, j \neq i} d(x_i, x_j)$$

• **Separation**: Mean distance between  $x_i$  and the points of the closest other clusters:

$$b(i) = \min_{\ell \neq k} \frac{1}{|\mathcal{C}_{\ell}|} \sum_{j \in \mathcal{C}_{\ell}} d(x_i, x_j)$$

→ Silhouette score:

• Point 
$$x_i: s(i) \in [-1, 1]$$

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

#### Entire dataset:

$$S = \frac{1}{n} \sum_{i=1}^{n} s(i)$$
$$= \frac{1}{K} \sum_{k=1}^{K} \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} s(i)$$

#### Example of Internal Metric: Silhouette Coefficient

Let  $x_i$ , where  $i \in C_k$ . n points, K clusters.

• **Cohesion**: Mean distance between  $x_i$  and other points in  $C_k$ :

$$a(i) = \frac{1}{|\mathcal{C}_k| - 1} \sum_{j \in \mathcal{C}_k, j \neq i} d(x_i, x_j)$$

• **Separation**: Mean distance between  $x_i$  and the points of the closest other clusters:

$$b(i) = \min_{\ell \neq k} \frac{1}{|\mathcal{C}_{\ell}|} \sum_{j \in \mathcal{C}_{\ell}} d(x_i, x_j)$$

|            | $ $ ( $\mathcal{T}$ ) | $(\mathcal{R})$ | $(\mathcal{C}_2)$ | $(\mathcal{C}_{20})$ |
|------------|-----------------------|-----------------|-------------------|----------------------|
| Silhouette | 0.83                  | -0.03           | 0.66              | 0.39                 |

→ Silhouette score:

• Point 
$$x_i: s(i) \in [-1, 1]$$

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

#### Entire dataset:

$$\begin{split} S \ &= \frac{1}{n} \sum_{i=1}^n s(i) \\ &= \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} s(i) \end{split}$$

Function silhouette\_score from the sklearn.metrics package.

#### Inertia-Based Criteria

Let a partition  $\mathcal{P}_K$ .

• **R-Square**: 
$$RSQ(\mathcal{P}_K) = \frac{I_{Inter}(\mathcal{P}_K)}{I_{Tot}} = 1 - \frac{I_{Intra}(\mathcal{P}_K)}{I_{Tot}}$$

• Semi-Partial R-Square:  $SPRSQ(\mathcal{P}_K) = \frac{I_{Inter}(\mathcal{P}_K) - I_{Inter}(\mathcal{P}_{K-1})}{I_{Tot}}$ 

• Calinski-Harabasz (CH):  $PseudoF(\mathcal{P}_K) = \frac{I_{Inter}(\mathcal{P}_K)}{I_{Intra}(\mathcal{P}_K)} \times \frac{n-K}{K-1}$ 

|                   | $(\mathcal{T})$ | $(\mathcal{R})$ | $(\mathcal{C}_2)$ | $(\mathcal{C}_{20})$ |
|-------------------|-----------------|-----------------|-------------------|----------------------|
| Silhouette        | 0.83            | -0.03           | 0.66              | 0.39                 |
| Calinski-Harabasz | 1549.85         | 0.03            | 225.78            | 1009.70              |
| Davies-Bouldin    | 0.24            | 64.40           | 0.45              | 0.66                 |

## **Example of External Metric: Purity**

Let  $\mathcal{P}^{\star}_L = \{\mathcal{C}^{\star}_1, \dots, \mathcal{C}^{\star}_{K^{\star}}\}$  be the ground truth partition, n points.

Consider a partition  $\mathcal{P}_K = \{\mathcal{C}_1, \ldots, \mathcal{C}_K\}.$ 

$$\mathcal{P}urity(\mathcal{P}_K) = \frac{1}{n} \sum_{k=1}^{K} \max_{\ell \in [\![1,K^\star]\!]} |\mathcal{C}_{\ell}^{\star} \cap \mathcal{C}_k|$$

|                   | $(\mathcal{T})$ | $(\mathcal{R})$ | $(\mathcal{C}_2)$ | $(\mathcal{C}_{20})$ |
|-------------------|-----------------|-----------------|-------------------|----------------------|
| Silhouette        | 0.83            | -0.03           | 0.66              | 0.39                 |
| Calinski-Harabasz | 1549.85         | 0.03            | 225.78            | 1009.70              |
| Davies-Bouldin    | 0.24            | 64.40           | 0.45              | 0.66                 |
| Purity score      | 1               | 0.36            | 0.67              | 1                    |
|                   |                 |                 |                   |                      |

Issue: More clusters, better score.

How to evaluate it? Tools to Evaluate and Compare Clusters

#### How to Compare two Clusterings?

Let us suppose that we have obtained two partitions from the same data :

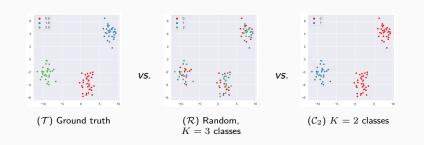
$$\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$$
 and  $\mathcal{Q}_L = \{\mathcal{D}_1, \dots, \mathcal{D}_L\}$ 

Question: How to compare these two classifications?

• Contingency table,

. . .

- Rand Index (RI) and Adjusted Rand Index (ARI),
- Variation of information,



# (Adjusted) Rand Index

| $\mathcal{P}_K$ vs. $\mathcal{Q}_L$ | Grouped in $\mathcal{P}_K$ | Separated in $\mathcal{Q}_L$ |                                                    |
|-------------------------------------|----------------------------|------------------------------|----------------------------------------------------|
| Grouped in $\mathcal{P}_K$          | а                          | b                            | $egin{array}{llllllllllllllllllllllllllllllllllll$ |
| Separated in $\mathcal{Q}_L$        | С                          | d                            | c + d: Disagreements.                              |

• **Rand Index**: Proportion of point pairs that are grouped in the same way in both partitions.

| $RI(\mathcal{P}_{K}, \mathcal{Q}_{L}) =$      | a + d                |
|-----------------------------------------------|----------------------|
| $ \mathbf{n}(\mathbf{P}_K, \mathbf{Q}_L) -  $ | $\overline{a+b+c+d}$ |

# (Adjusted) Rand Index

6

| $\mathcal{P}_K$ vs. $\mathcal{Q}_L$ | Grouped in $\mathcal{P}_K$ | Separated in $\mathcal{Q}_L$ |                                                                 |
|-------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------|
| Grouped in $\mathcal{P}_K$          |                            | b                            | $a+b$ : Agreements between $\mathcal{P}_K$ and $\mathcal{Q}_L.$ |
| Separated in $\mathcal{Q}_L$        | С                          | d                            | c+d: Disagreements.                                             |

• Rand Index: Proportion of point pairs that are grouped in the same way in both partitions.

$$egin{aligned} egin{aligned} egi$$

• Adjusted Rand Index: Let 
$$n_{k\ell} = |\mathcal{C}_k \cap \mathcal{D}_\ell|$$
,  $n_{k+} = \sum_{\ell=1}^L n_{k\ell}$ ,  $n_{+\ell} = \sum_{k=1}^K n_{k\ell}$ .

• 
$$RI = \sum_{k\ell} {\binom{n_{k\ell}}{2}}$$
  
•  $\mathbb{E}[RI] = \frac{\sum_k {\binom{n_{k+}}{2}} \times \sum_\ell {\binom{n_{+\ell}}{2}}}{{\binom{n}{2}}},$ 

Indices obtained by randomly partitioning the data

• 
$$\max(RI) = \frac{1}{2} \left( \sum_{k} \binom{n_{k+}}{2} + \sum_{\ell} \binom{n_{+\ell}}{2} \right)$$

$$\boldsymbol{ARI}(\mathcal{P}_{K}, \mathcal{Q}_{L}) = \frac{RI - \mathbb{E}[RI]}{\max(RI) - \mathbb{E}[RI]}$$

The closer the ARI is to 1, the more similar the two partitions are.

## **Contingency Table**

• Contingency table to observe if classes are shared, split, etc.

| $n_{k\ell} =  \mathcal{C}_k \cap \mathcal{D}_\ell $                                                     | $\mathcal{P}_K$ vs. $\mathcal{Q}_L$   | $\mathcal{D}_1$                | $\mathcal{D}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | $\mathcal{D}_L$ | Sums     |
|---------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|----------|
| $= \# \left\{ i \in \llbracket 1, n \rrbracket \mid i \in \mathcal{C}_k \cap \mathcal{D}_\ell \right\}$ | ${\mathcal C}_1$                      | $n_{11}$                       | $n_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | $n_{1L}$        | $n_{1+}$ |
|                                                                                                         | $\mathcal{C}_2$                       | $n_{21}$                       | $n_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | $n_{2L}$        | $n_{2+}$ |
| $n_{k+} = \sum_{\ell=1}^{l} n_{k\ell}$                                                                  | :                                     | ÷                              | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·.                                                                                     | ÷               | ÷        |
| $\ell = 1$ $K$                                                                                          | $\mathcal{C}_K$                       | $n_{K1}$                       | $n_{K2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | $n_{KL}$        | $n_{K+}$ |
| $n_{+\ell} = \sum_{k=1} n_{k\ell}$                                                                      | Sums                                  | $n_{+1}$                       | $n_{+2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | $n_{+L}$        | n        |
|                                                                                                         |                                       | 30<br>39<br>30<br>40<br>8<br>8 | For the second sec | 22<br>23<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |                 |          |
| $(\mathcal{T})$ vs. $(\mathcal{R})$                                                                     | $(\mathcal{T})$ vs. $(\mathcal{C}_2)$ |                                | $(\mathcal{R})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vs. ( $\mathcal{C}_2$                                                                  | 2)              |          |

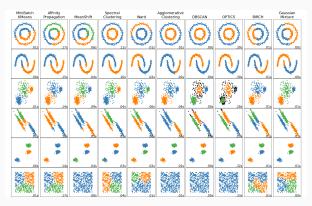
Functions confusion matrix and ConfusionMatrixDisplay from sklearn.metrics.

# How to choose a clustering algorithm? *Course Outline*

## A Variety of Methods

- Clustering methods distinguish by:
  - Type of "similarity" between individuals: Distance, probability distribution, shape, etc.
  - Type of "partitioning": Hard or fuzzy clustering.

- Various categories of methods:
  - Distance-based,
  - Connectivity-based,
  - Density-based,
  - etc.

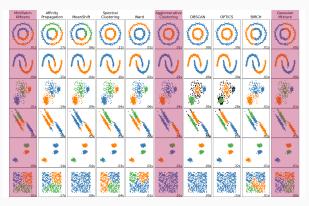


From: scikit-learn.org/stable/auto\_examples/cluster/plot\_cluster\_comparison.html

## A Variety of Methods

- Clustering methods distinguish by:
  - Type of "similarity" between individuals: Distance, probability distribution, shape, etc.
  - Type of "partitioning": Hard or fuzzy clustering.

- Various categories of methods:
  - Distance-based,
  - Connectivity-based,
  - Density-based,
  - etc.



From: scikit-learn.org/stable/auto\_examples/cluster/plot\_cluster\_comparison.html

# **Different Families of Clustering Algorithms**

|         | Distance-based                                                                                                             | Connectivity-based                                                                                                                                  | Density-based                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pros    | <ul> <li>Can conduct inference<br/>on new data points</li> <li>Usually fast</li> </ul>                                     | <ul> <li>Does not need access<br/>to data points values<br/>(only distances)</li> <li>Can handle non<br/>linearly separated<br/>clusters</li> </ul> | <ul> <li>Does not need access to data points values</li> <li>Can handle non linearly separable clusters</li> <li>Does not need number of clusters</li> <li>Can handle outliers</li> </ul> |
| Cons    | <ul> <li>Number of clusters<br/>required</li> <li>No outlier detection</li> <li>Need access to point<br/>values</li> </ul> | <ul> <li>Number of clusters<br/>required</li> <li>No outlier detection</li> <li>Usually slow</li> <li>Cannot conduct<br/>inference</li> </ul>       | <ul> <li>Usually slow</li> <li>Cannot be used for inference</li> </ul>                                                                                                                    |
| Example | K-means                                                                                                                    | Hierarchical clustering                                                                                                                             | DBSCAN                                                                                                                                                                                    |