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Hierarchical Classification

1.1 Hierarchy



Introduction

We observe n individuals described by p variables: z; = (xﬂ, Ti2y. - ,xip) ex
D -
T11 T1p X =RP, {0,1}?, |-m,m]P, RTx{0,1}P~2, ...
x T .
X = 22 2p ® |nitial measurements,
® Transformed measurements,
Tnl Thp ® Coordinates after dimension reduction.

® | et d be an adapted dissimilarity between individuals,

~ Depends mainly on whether the data are quantitative or qualitative.



Introduction

We observe n individuals described by p variables: z; = (xil, Ti2y. - ,x,-p) ex
D -
T11 T1p X =RP, {0,1}?, |-m,m]P, RTx{0,1}P~2, ...
x T .
X = 22 2p ® |nitial measurements,
® Transformed measurements,
Tnl Thp ® Coordinates after dimension reduction.

® | et d be an adapted dissimilarity between individuals,

~ Depends mainly on whether the data are quantitative or qualitative.

® Goal: Prioritize the data, i.e. obtain a sequence of nested partitions.

More precisely: Production of a structure (tree or dendrogram) allowing:

= |dentification of hierarchical links between individuals or groups of individuals,
= Detection of a “natural” number of classes within the population.



Example of a Hierarchy: Phylogenetic Tree (Insects)
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Hierarchy

Definition: Hierarchy of a set X = {z1,...,z,}
. . . Example:
A hierarchy H is a set of parts of X satisfying:

o Vie[l,n], {w} € H, #={{A}, {B}, {C}, {D}. {E},
{A,B}, {C>D}’ {C,D,E},
{A,B,C,D,E}}

* X cH,
* VA BeH, ANB=2or AC Bor BC A.



Hierarchy

Definition: Hierarchy of a set X = {z1,...,z,}

. . . Example:

A hierarchy H is a set of parts of X satisfying:
o Vie[l,n], o} € A, # = {{A}, {B}, {C}, {D}, {E},

{A,B}, {C,D}, {C,D, E},

{A,B,C,D,E}}

* X cH,
* VA BeH, ANB=2or AC Bor BC A.

Indexed hierarchy e vz € {A,B,C,D,E}, h({z}) =0,
An indexed hierarchy is a pair (#, h) where ° h({A,B}) =1,
H is a hierarchy and h: H — R fulfills : h({C, D}) = 3.5,

® VA e H, h(A) = 0iff Ais a singleton, h({C, D, E}) = 5.04,

* VA, BeHstA# D, h({A, B,C, D, E}) = 7.52.
If A C B then h(A) < h(B).




Hierarchy

Definition: Hierarchy of a set X = {z1,...,z,}
Example:

H= {{A}’ {B}, {C}, {D}, {£},
{4, B}, {C, D}, {C, D, E},
{A,B,C,D,E}}

A hierarchy H is a set of parts of X" satisfying:
o Vie[l,n], {z:} € H,
* X eH,
s VABeH, ANB=gor AC Bor B C A.

Indexed hierarchy e vz € {A,B,C,D,E}, h({z}) =0,
An indexed hierarchy is a pair (#, h) where ° h({A,B}) =1,
H is a hierarchy and h: H — R fulfills : e h({C,D}) = 3.5,

® VA e H, h(A) = 0iff Ais a singleton,

e h({C,D,E}) = 5.04,
* VA, BeHstA# D,  h({A,B,C,D,E}) = 7.52.
If A C B then h(A) < h(B).

Dendrogram: Representation of the dendrogram
not unique: if X is a set of n points, 2n — 1

possibilities to order the leaves of the tree.




Hierarchical Classification

1.2 Hierarchical Classification



Hierarchy vs. Clustering
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® Aim: Build an indexed hierarchy



Hierarchy vs. Clustering

(CAqalomerative Hierarchical Clustering ]
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® Aim: Build an indexed hierarchy

® 1st strategy: Agglomerative Hierarchical Classification (AHC)
= Sart from the bottom of the dendrogram (the singletons),
= Aggregate two by two the closest parts until we obtain only one class.

~ How to choose the classes to aggregate?



Hierarchy vs. Clustering
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Janssen (2012) fix o /@
® Aim: Build an indexed hierarchy

® 1st strategy: Agglomerative Hierarchical Classification (AHC)
= Sart from the bottom of the dendrogram (the singletons),
= Aggregate two by two the closest parts until we obtain only one class.

~ How to choose the classes to aggregate?

® 2nd strategy: Divise Hierarchical Classification (DHC)
= Start from the top of the dendrogram,
= Successive divisions until we obtain classes reduced to singletons.

~» How to choose the classes to divide?



Agglomerative Hierarchical Classification [Johnson, 1967, Ward, 1963]

Initialization: ~ ® Let an aggregation measure D.
o Let P = {{wl} {mn}} be the singleton partition.
Iteration ¢: From the partition P = ={Ci, ..., Ck} into K classes,

® Aggregate the two classes Ci, and Cj that minimize the

aggregation measure D: | Crur’ = Cr U Cyr |

® Form a partition into K — 1 classes: Pgﬂ) ={C1,...,Crur’y---,Ck}

End: Repeat the aggregation step until a single-class partition is obtained.
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Agglomerative Hierarchical Classification

7¢ regroupement

6° regroupement

5¢ regroupement

42 regroupement

3¢ regroupement

2¢ regroupement
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F 4.07 4.23 2.01 2.06 E 5.55 5.57 1.00
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H 5.00 5.02 4.75 3.16 2.90 1.28 1.12

Data analysis MOOC of Frangois Husson (in French).



https://husson.github.io/MOOC_AnaDo/classif.html

Missing bricks to implement classification

Dendrogram: ward linkage Clusters: ward linkage

1. Choice of a dissimilarity d between points, it g@n
To be made according to the type of data: - . %g ’
Qualitative, Quantitative, etc. = ® S

Dendrogram: ward linkage

2. Choice of an aggregation measure D between classes. w [ L

3. Construction of a dendrogram (not unique!). [———
w [ L s
4. Criterion for the cut of the dendrogram to deduce a " o
classification of the data. = N

EInAIS
B s o 5 1w

Dendrogram: single linkage. Clusters: single linkage

Package scipy.cluster.hierarchy ~ See attached python notebook.

® linkage: method=’single’,’complete’,’average’,’ward’, etc.
® dendrogram to draw the dendrogram,

® cut_tree to cut the dendrogram so that there are K clusters,

fcluster to obtain a clustering from a dendrogram, at a given level




Missing bricks to implement classification

Dendrogram: ward linkage Clusters: ward linkage
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2.| Choice of an aggregation measure D between classes. w [ & g&

3.| Construction of a dendrogram (not unique!).

Dendrogram: ward linkage Clusters: ward linkage

4. Criterion for the cut of the dendrogram to deduce a " - 3 .o
classification of the data. P L N
f T
Package scipy.cluster.hierarchy ~» See attached python notebook. : -

® linkage: method=’single’,’complete’,’average’,’ward’, etc.

Dendrogram: complete linkage

® dendrogram to draw the dendrogram, “ .

® cut_tree to cut the dendrogram so that there are K clusters, ° i
s - -5

® fcluster to obtain a clustering from a dendrogram, at a given level o Lkl )




Dendrogram Construction

2.1 Linkage Function



Single vs. Complete Linkage

Single linkage:

D(Ck,Crr) = min  d(zs,z:)

1€Cp, i/GCk/

Single Linkage

Minimum Distance

Cluster 1 Cluster 2

Complete linkage:

D(Ck,Crr) = max  d(xi, )

1€Cp, iléck/

Complete Linkage

Cluster 1

Maximum Distance

Cluster 2




Single vs. Complete Linkage

Single linkage:

D(Ck,Crr) = min  d(zs,z:)

1€Cp, i/GCk/

+ Minimal spanning tree,

Single Linkage

Minimum Distance

Cluster 1 Cluster 2

Complete linkage:

D(Ck,Crr) = max  d(xi, )

i€CY, 1 ECy/

Complete Linkage

Cluster 1

Maximum Distance

Cluster 2




Single vs. Complete Linkage

Single linkage: Complete linkage:

D(Ck,Crr) = min  d(zs,z:) D(Ck,Crr) = max  d(xi, )

1€Cy, 1 €Cpy 1€Cy, 1 €Cy

+ Minimal spanning tree,
— Classes with very different diameters,

— Chaining effect: tendency to aggregate
rather than create new classes

— Sensitivity to noisy individuals.

Complete Linkage
Single Linkage

. Maximum Distance .
Minimum Distance

Cluster 1 Cluster 2 Cluster 1 Cluster 2




Single vs. Complete Linkage

Single linkage:

D(Ck,Crs) = min

i€C, 1 ECy

7-’”72’)

+ Minimal spanning tree,

— Classes with very different diameters,

— Chaining effect: tendency to aggregate

rather than create new classes

— Sensitivity to noisy individuals.

Single Linkage

Minimum Distance

Cluster 1

Cluster 2

Complete linkage:

D(Ck,Cx) = max  d(zi,xy)

i€CY, 1 ECy/

+ Creates compact classes (diameter
control): this fusion generates the
smallest increase in diameters,

Complete Linkage

. Maximum Distance

Cluster 1 Cluster 2



Single vs. Complete Linkage

Single linkage:

D(Ck,Crs) = min

i€C, 1 ECy

d(zi, x0)

+ Minimal spanning tree,
— Classes with very different diameters,

— Chaining effect: tendency to aggregate
rather than create new classes

— Sensitivity to noisy individuals.

Single Linkage

Minimum Distance

Cluster 1 Cluster 2

Complete linkage:

D(Ck,Cx) = max  d(zi,xy)

i€CY, 1 ECy/

+ Creates compact classes (diameter
control): this fusion generates the
smallest increase in diameters,

— No separation control: arbitrarily
close classes,

— Sensitivity to noisy individuals.

Complete Linkage

. Maximum Distance

Cluster 1 Cluster 2




Average vs. Ward’s Linkage

Average linkage:

1
D(Cr,Crr) = m Z Z d(zi, 1)

i€CLI/EC,,

Average Linkage

Cluster 1

Average Distance

Cluster 2

Ward’s linkage:

|Cr]ICh |

— AR T P 2

where g /py gravity centers of Ci /Cpr.

Ward’s

Cluster 1 Cluster 2

10



Average vs. Ward’s Linkage

Average linkage:

1
D(Cr,Crr) = m Z Z d(zi, 1)

i€CLI/EC,,

+ Compromise between single and
complete linkages: good balance
between class separation and class
diameter,

+ Tendency to produce classes of close
variance.

Average Linkage

Average Distance

Cluster 1 Cluster 2

Ward’s linkage:

Cr||Cpr
D(C, Cur) = kG ] )

|Cr| + |Chs

where py /s gravity centers of Ci /Cyr.

Ward’s

Cluster 1 Cluster 2
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Average vs. Ward’s Linkage

Average linkage:

1
D(Cr,Crr) = m Z Z d(zi, 1)

i€CLI/EC,,

+ Compromise between single and
complete linkages: good balance
between class separation and class
diameter,

+ Tendency to produce classes of close
variance.

Average Linkage

Average Distance

Cluster 1 Cluster 2

Ward’s linkage:

|Cr]ICh |

— , 2

where py /s gravity centers of Ci /Cyr.

+ Tendency to build classes of equal
size for a given level of hierarchy,

+ Groups together classes with close
gravity centers,

+ Favors spherical classes.

Ward’s

Cluster 1 Cluster 2

10



Linkage Criteria

Single linkage | Complete linkage | Average linkage | Ward linkage
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Ward’s Method [Ward, 1963]

Proposition

Let Px = {Ci1,...,Ck} a partition of the data and k # /.

|Cil|Cr|

Inra 4 :In'ra In'ra / —d 5 /2
Intra(Cruk’) = Iintra(Ck) + Iint (Ck)+|Ck|+|Ck/| (1t prrer)

where . /pg gravity centers of Ci/Cys, and d Euclidean distance.

Ward’s method: Choose at each step to group the two classes whose merging
implies a minimal increase of the intraclass inertia.

Reminder: [Tot = [Intm' + ]In,tra

K

where  Irnira = ZL”"’"”’(CA') and  I1nera(Cr) = Z d(/%a-’l?i)z-

k=1 1€C

12



Lance-Williams Algorithms

® Naive implementation of hierarchical clustering: Compute the distance matrix
between each cluster at each step.

13



Lance-Williams Algorithms

® Naive implementation of hierarchical clustering: Compute the distance matrix

between each cluster at each step.

® Lance-Williams algorithms: Recursive formula for computing cluster distances

at each step.

+ 68 |D(Cy, Ck) — D(Ce, Cir)|

D(Ce, Chur') = aD(Ce, Cx) + BD(Ce, Cir) + 7 D(Ck, Cr)

Linkage ‘ o B v g
Single 0.5 0.5 0 -0.5
Complete 0.5 0.5 0 0.5
|Ck| Ci|
A _ _ 0 0
vereee [Cel + ICu| [Cel + 1Ci |
Ward Ck| + |Ce| Ci| + |Ce] |Ce] 0

[Ckl +1Cur T +1Cel  ICkl +1Cwl+1Cel [kl + ICur| + ICe]

13




Indexed hierarchy

® In general, VA, B € H, | h(AU B) =D(A, B) |

® If (H,h) defined in this way does not verify the properties of an indexed
hierarchy, we can use the following relation:

VA,B€H, h(AUB)=max{D(A,B), h(A), h(B)}.

Dendrogram: ward linkage Clusters: ward linkage Dendrogram: ward linkage Clusters: ward linkage Dendrogram: ward linkage C\us(ers wam linkage
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Dendrogram Construction

2.2 Cutting the Dendrogram



Cutting the Dendrogram

® Cutting the dendrogram at a given index level — Partition.

i.e. cut-off level determines the nb of classes and these classes are then unique

® The cut-off should be done :

= After aggregations corresponding to low values of the index,
= Before aggregations corresponding to high levels of the index,
which dissociate the well-distinct groups of the population.

Dendrogram: ward linkage Clusters: ward linkage Dendrogram: ward linkage Clusters: ward hr\kage
5
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Cutting the Dendrogram

® Cutting the dendrogram at a given index level — Partition.
i.e. cut-off level determines the nb of classes and these classes are then unique.

® The cut-off should be done :
= After aggregations corresponding to low values of the index,
= Before aggregations corresponding to high levels of the index,
which dissociate the well-distinct groups of the population.

® Empirical rule: Selection of a cut when there is a significant jump in the index
by visual inspection of the tree.
This jump reflects the sudden passage from classes of a certain homogeneity to
much less homogeneous classes.

® |n most cases, several thresholds and therefore several possible choices of
partitions.

Dendrogram: ward linkage Clusters: ward linkage Dendrogram: ward linkage
5

Clusters: ward linkage

15



Cutting the Dendrogram: Some Criteria

® The dendrogram cut-off can be defined by determining a priori the number of
classes into which we want to divide the data set.

For this, we can use the usual criteria:
» R-square (RSQ): Elbow on the curve K — RSQ(K),
= Semi-partial R-square (SPRSQ): Stronger reduction of the SPRSQ,
= Calinski-Harabasz: Peak on the curve
= Silhouette criterion,

= etc.



Strengths and Weaknesses

Pros: @ Easy consideration of distances and similarities of any type,
® No assumption of a particular number of clusters,

® May correspond to meaningful taxonomies.




Strengths and Weaknesses

Pros: @ Easy consideration of distances and similarities of any type,
® No assumption of a particular number of clusters,
® May correspond to meaningful taxonomies.

Cons: ® Choice of the dendrogram cut-off,
® The partition obtained at a step depends on the one at the
previous step,
® Once a decision is made to combine two clusters, it can't be
undone,
® Too slow for large data sets.

Ward linkage Ward linkage Ward linkage
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