Unsupervised Classification

A Connectivity-Based Algorithm: Agglomerative Hierarchical Clustering

Data Analysis – juliette.chevallier@insa-toulouse.fr INSA Toulouse, Applied Mathematics, 4th year

1. Hierarchical Classification

- 1.1 Hierarchy
- 1.2 Hierarchical Classification

2. Dendrogram Construction

- 2.1 Linkage Function
- 2.2 Cutting the Dendrogram

Hierarchical Classification

1.1 Hierarchy

1.2 Hierarchical Classification

Introduction

We observe n individuals described by p variables: $x_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X}$

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

 $\mathcal{X} = \mathbb{R}^p$, $\{0,1\}^p$, $]-\pi,\pi]^p$, $\mathbb{R}^q \times \{0,1\}^{p-q}$,...

- Initial measurements,
- Transformed measurements,
- Coordinates after dimension reduction.
- Let *d* be an adapted dissimilarity between individuals,
 - \sim Depends mainly on whether the data are *quantitative* or *qualitative*.

Introduction

We observe n individuals described by p variables: $x_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X}$

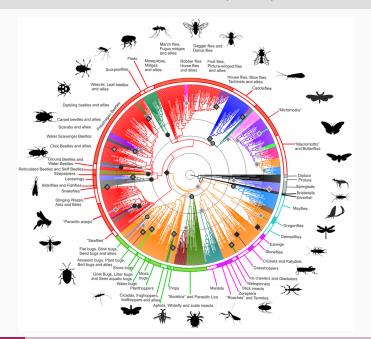
$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix} \qquad \begin{array}{l} \mathcal{X} = \mathbb{R}^p, \ \{0,1\}^p, \]-\pi,\pi]^p, \ \mathbb{R}^q \times \{0,1\}^{p-q}, \dots \\ \bullet \text{ Initial measurements,} \\ \bullet \text{ Transformed measurements,} \\ \bullet \text{ Coordinates after dimension reduction.} \end{array}$$

- Let *d* be an adapted dissimilarity between individuals,
 - \sim Depends mainly on whether the data are *quantitative* or *qualitative*.
- Goal: Prioritize the data, *i.e.* obtain a sequence of nested partitions.

More precisely: Production of a structure (tree or dendrogram) allowing:

- Identification of hierarchical links between individuals or groups of individuals,
- Detection of a "natural" number of classes within the population.

Example of a Hierarchy: Phylogenetic Tree (Insects)



Hierarchy

Definition: Hierarchy of a set $\mathcal{X} = \{x_1, \ldots, x_n\}$

A hierarchy \mathcal{H} is a set of parts of \mathcal{X} satisfying:

- $orall i \in \llbracket 1,n
 rbracket$, $\{x_i\} \in \mathcal{H}$,
- $\mathcal{X} \in \mathcal{H}$,
- $\forall A, B \in \mathcal{H}, A \cap B = \emptyset$ or $A \subset B$ or $B \subset A$.

Example:

$$\begin{split} \mathcal{H} &= \Big\{ \{A\},\,\{B\},\,\{C\},\,\{D\},\,\{E\},\\ &\{A,B\},\,\{C,D\},\,\{C,D,E\},\\ &\{A,B,C,D,E\} \Big\} \end{split}$$

Hierarchy

Definition: Hierarchy of a set $\mathcal{X} = \{x_1, \ldots, x_n\}$

A hierarchy \mathcal{H} is a set of parts of \mathcal{X} satisfying:

- $orall i \in \llbracket 1,n
 rbracket, \{x_i\} \in \mathcal{H}$,
- $\mathcal{X} \in \mathcal{H}$,
- $\forall A, B \in \mathcal{H}, A \cap B = \emptyset$ or $A \subset B$ or $B \subset A$.

Indexed hierarchy

An indexed hierarchy is a pair (\mathcal{H}, h) where \mathcal{H} is a hierarchy and $h: \mathcal{H} \to \mathbb{R}^+$ fulfills :

- $\forall A \in \mathcal{H}, \ h(A) = 0$ iff A is a singleton,
- $\forall A, B \in \mathcal{H} \text{ s.t } A \neq B$, If $A \subset B$ then $h(A) \leq h(B)$.

Example:

- $$\begin{split} \mathcal{H} &= \Big\{ \{A\},\,\{B\},\,\{C\},\,\{D\},\,\{E\},\\ &\{A,B\},\,\{C,D\},\,\{C,D,E\},\\ &\{A,B,C,D,E\} \Big\} \end{split}$$
- $\forall x \in \{A, B, C, D, E\}, \ h(\{x\}) = 0,$
- $h(\{A,B\}) = 1$,
- $h(\{C, D\}) = 3.5$,
- $h(\{C, D, E\}) = 5.04$,
- $h(\{A, B, C, D, E\}) = 7.52.$

Hierarchy

Definition: Hierarchy of a set $\mathcal{X} = \{x_1, \ldots, x_n\}$

A hierarchy \mathcal{H} is a set of parts of \mathcal{X} satisfying:

- $orall i \in \llbracket 1,n
 rbracket$, $\{x_i\} \in \mathcal{H}$,
- $\mathcal{X} \in \mathcal{H}$,
- $\forall A, B \in \mathcal{H}, A \cap B = \emptyset$ or $A \subset B$ or $B \subset A$.

Indexed hierarchy

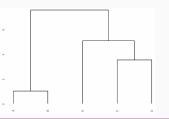
An indexed hierarchy is a pair (\mathcal{H}, h) where \mathcal{H} is a hierarchy and $h: \mathcal{H} \to \mathbb{R}^+$ fulfills :

- $\forall A \in \mathcal{H}, \ h(A) = 0$ iff A is a singleton,
- $\forall A, B \in \mathcal{H} \text{ s.t } A \neq B$, If $A \subset B$ then $h(A) \leq h(B)$.

Dendrogram: Representation of the dendrogram not unique: if \mathcal{X} is a set of n points, 2n - 1 possibilities to order the leaves of the tree.

Example:

- $$\begin{split} \mathcal{H} &= \Big\{ \{A\}, \, \{B\}, \, \{C\}, \, \{D\}, \, \{E\}, \\ &\{A,B\}, \, \{C,D\}, \, \{C,D,E\}, \\ &\{A,B,C,D,E\} \Big\} \end{split}$$
- $\forall x \in \{A, B, C, D, E\}, \ h(\{x\}) = 0,$
- $h(\{A,B\}) = 1$,
- $h(\{C, D\}) = 3.5$,
- $h(\{C, D, E\}) = 5.04$,
- $h(\{A, B, C, D, E\}) = 7.52.$

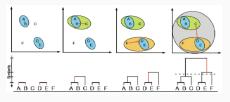


Hierarchical Classification

1.1 Hierarchy

1.2 Hierarchical Classification

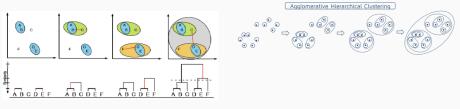
Hierarchy vs. Clustering



Janssen (2012)

• Aim: Build an indexed hierarchy

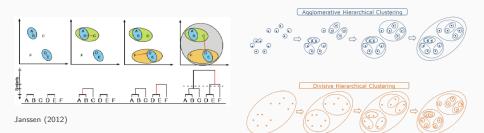
Hierarchy vs. Clustering



Janssen (2012)

- Aim: Build an indexed hierarchy
- 1st strategy: Agglomerative Hierarchical Classification (AHC)
 - Sart from the bottom of the dendrogram (the singletons),
 - Aggregate two by two the closest parts until we obtain only one class.
 - \sim How to choose the classes to aggregate?

Hierarchy vs. Clustering



- Aim: Build an indexed hierarchy
- 1st strategy: Agglomerative Hierarchical Classification (AHC)
 - Sart from the bottom of the dendrogram (the singletons),
 - Aggregate two by two the closest parts until we obtain only one class.
 - \sim How to choose the classes to aggregate?
- 2nd strategy: Divise Hierarchical Classification (DHC)
 - Start from the top of the dendrogram,
 - Successive divisions until we obtain classes reduced to singletons.
 - \sim How to choose the classes to divide?

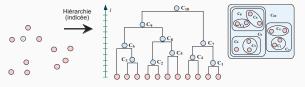
Initialization: • Let an aggregation measure \mathcal{D} .

• Let $\mathcal{P}_n^{(0)} = \{\{x_1\}, \ldots, \{x_n\}\}\$ be the singleton partition.

Iteration *t*: From the partition $\mathcal{P}_{K}^{(t)} = \{\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}\}$ into *K* classes,

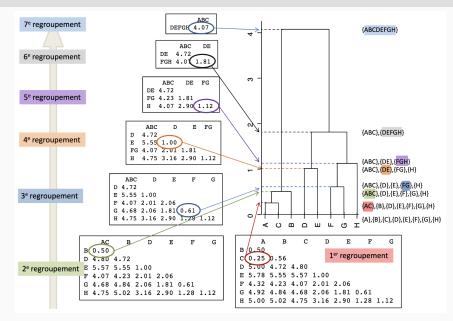
- Aggregate the two classes C_k and $C_{k'}$ that minimize the aggregation measure \mathcal{D} : $C_{k\cup k'} = C_k \cup C_{k'}$
- Form a partition into K 1 classes: $\mathcal{P}_{K-1}^{(t+1)} = \{\mathcal{C}_1, \dots, \mathcal{C}_{k \cup k'}, \dots, \mathcal{C}_K\}$

End: Repeat the aggregation step until a single-class partition is obtained.



Bisson (2001)

Agglomerative Hierarchical Classification



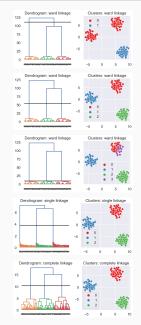
Data analysis MOOC of François Husson (in French).

Missing bricks to implement classification

- Choice of a dissimilarity d between points, To be made according to the type of data: Qualitative, Quantitative, etc.
- 2. Choice of an aggregation measure \mathcal{D} between classes.
- 3. Construction of a dendrogram (not unique!).
- 4. Criterion for the cut of the dendrogram to deduce a classification of the data.

Package scipy.cluster.hierarchy \sim See attached python notebook.

- linkage: method='single','complete','average','ward', etc.
- dendrogram to draw the dendrogram,
- cut_tree to cut the dendrogram so that there are K clusters,
- fcluster to obtain a clustering from a dendrogram, at a given level



Missing bricks to implement classification

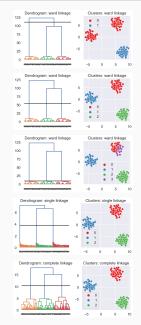
- Choice of a dissimilarity d between points, To be made according to the type of data: Qualitative, Quantitative, etc.
- 2. Choice of an aggregation measure $\mathcal D$ between classes.

3. Construction of a dendrogram (not unique!).

4. Criterion for the cut of the dendrogram to deduce a classification of the data.

Package scipy.cluster.hierarchy \rightsquigarrow See attached python notebook.

- linkage: method='single','complete','average','ward', etc.
- dendrogram to draw the dendrogram,
- cut_tree to cut the dendrogram so that there are K clusters,
- fcluster to obtain a clustering from a dendrogram, at a given level



Dendrogram Construction

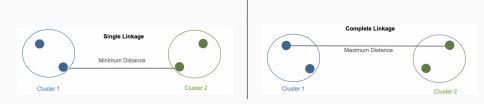
2.1 Linkage Function

2.2 Cutting the Dendrogram

Single linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \max_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$



Single linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

+ Minimal spanning tree,

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \max_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

Single linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Minimal spanning tree,
- Classes with very different diameters,
- Chaining effect: tendency to aggregate rather than create new classes
- Sensitivity to noisy individuals.

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \max_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

Single linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Minimal spanning tree,
- Classes with very different diameters,
- Chaining effect: tendency to aggregate rather than create new classes
- Sensitivity to noisy individuals.

Complete linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \max_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

+ Creates compact classes (diameter control): this fusion generates the smallest increase in diameters,

Single linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Minimal spanning tree,
- Classes with very different diameters,
- Chaining effect: tendency to aggregate rather than create new classes
- Sensitivity to noisy individuals.

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \max_{i \in \mathcal{C}_k, \, i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Creates compact classes (diameter control): this fusion generates the smallest increase in diameters,
- No separation control: arbitrarily close classes,
- Sensitivity to noisy individuals.

Average vs. Ward's Linkage

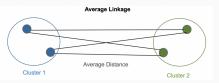
Average linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{1}{|\mathcal{C}_k||\mathcal{C}_{k'}|} \sum_{i \in \mathcal{C}_k} \sum_{i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

Ward's linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k| + |\mathcal{C}_{k'}|} d(\mu_k, \mu_{k'})^2$$

where $\mu_k/\mu_{k'}$ gravity centers of $\mathcal{C}_k/\mathcal{C}_{k'}.$

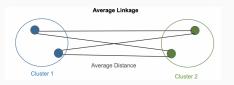


Average vs. Ward's Linkage

Average linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{1}{|\mathcal{C}_k||\mathcal{C}_{k'}|} \sum_{i \in \mathcal{C}_k} \sum_{i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Compromise between single and complete linkages: good balance between class separation and class diameter,
- + Tendency to produce classes of close variance.



Ward's linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k| + |\mathcal{C}_{k'}|} d(\mu_k, \mu_{k'})^2$$

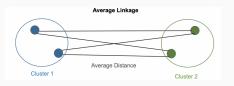
where $\mu_k/\mu_{k'}$ gravity centers of $\mathcal{C}_k/\mathcal{C}_{k'}.$

Average vs. Ward's Linkage

Average linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{1}{|\mathcal{C}_k||\mathcal{C}_{k'}|} \sum_{i \in \mathcal{C}_k} \sum_{i' \in \mathcal{C}_{k'}} d(x_i, x_{i'})$$

- + Compromise between single and complete linkages: good balance between class separation and class diameter,
- + Tendency to produce classes of close variance.



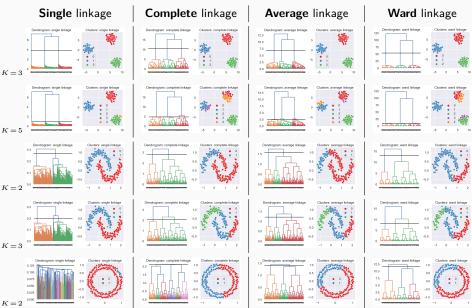
Ward's linkage:

$$\mathcal{D}(\mathcal{C}_k, \mathcal{C}_{k'}) = \frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k| + |\mathcal{C}_{k'}|} d(\mu_k, \mu_{k'})^2$$

where $\mu_k/\mu_{k'}$ gravity centers of $\mathcal{C}_k/\mathcal{C}_{k'}$.

- + Tendency to build classes of equal size for a given level of hierarchy,
- + Groups together classes with close gravity centers,
- + Favors spherical classes.

Linkage Criteria



11

Ward's Method [Ward, 1963]

Proposition

Let $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ a partition of the data and $k \neq \ell$.

$$I_{Intra}(\mathcal{C}_{k\cup k'}) = I_{Intra}(\mathcal{C}_k) + I_{Intra}(\mathcal{C}_{k'}) + \frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k| + |\mathcal{C}_{k'}|} d(\mu_k, \mu_{k'})^2$$

where $\mu_k/\mu_{k'}$ gravity centers of $C_k/C_{k'}$, and d Euclidean distance.

Ward's method: Choose at each step to group the two classes whose merging implies a minimal increase of the intraclass inertia.

Reminder:
$$I_{Tot} = I_{Inter} + I_{Intra}$$

where $I_{Intra} = \sum_{k=1}^{K} I_{Intra}(C_k)$ and $I_{Intra}(C_k) = \sum_{i \in C_k} d(\mu_k, x_i)^2$.

Lance-Williams Algorithms

• **Naive implementation** of hierarchical clustering: Compute the distance matrix between each cluster at each step.

Lance-Williams Algorithms

- **Naive implementation** of hierarchical clustering: Compute the distance matrix between each cluster at each step.
- Lance-Williams algorithms: Recursive formula for computing cluster distances at each step.

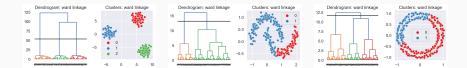
$$\mathcal{D}(\mathcal{C}_{\ell}, \mathcal{C}_{k \cup k'}) = \alpha \mathcal{D}(\mathcal{C}_{\ell}, \mathcal{C}_{k}) + \beta \mathcal{D}(\mathcal{C}_{\ell}, \mathcal{C}_{k'}) + \gamma \mathcal{D}(\mathcal{C}_{k}, \mathcal{C}_{k'}) \\ + \delta |\mathcal{D}(\mathcal{C}_{\ell}, \mathcal{C}_{k}) - \mathcal{D}(\mathcal{C}_{\ell}, \mathcal{C}_{k'})|$$

Linkage	$ \alpha$	β	γ	δ
Single	0.5	0.5	0	-0.5
Complete	0.5	0.5	0	0.5
Average	$\frac{ \mathcal{C}_k }{ \mathcal{C}_k + \mathcal{C}_{k'} }$	$\frac{ \mathcal{C}_{k'} }{ \mathcal{C}_k + \mathcal{C}_{k'} }$	0	0
Ward	$egin{array}{c c c c c c } \mathcal{C}_k + \mathcal{C}_\ell \ \hline \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_\ell \end{array}$	$\frac{ \mathcal{C}_{k'} + \mathcal{C}_{\ell} }{ \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_{\ell} }$	$-rac{ \mathcal{C}_\ell }{ \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_\ell }$	0

Indexed hierarchy

- In general, $\forall A, B \in \mathcal{H}$, $h(A \cup B) = \mathcal{D}(A, B)$
- If (\mathcal{H}, h) defined in this way does not verify the properties of an indexed hierarchy, we can use the following relation:

 $\forall A, B \in \mathcal{H}, \quad h(A \cup B) = \max\{\mathcal{D}(A, B), h(A), h(B)\}.$



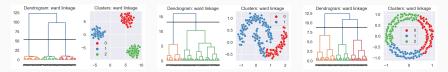
Dendrogram Construction

2.1 Linkage Function

2.2 Cutting the Dendrogram

Cutting the Dendrogram

- The cut-off should be done :
 - After aggregations corresponding to low values of the index,
 - Before aggregations corresponding to high levels of the index, which dissociate the well-distinct groups of the population.

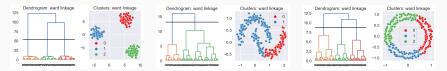


Cutting the Dendrogram

- Cutting the dendrogram at a given index level \implies **Partition**.
 - i.e. cut-off level determines the nb of classes and these classes are then unique.
- The cut-off should be done :
 - After aggregations corresponding to low values of the index,
 - Before aggregations corresponding to high levels of the index, which dissociate the well-distinct groups of the population.
- **Empirical rule**: Selection of a cut when there is a significant jump in the index by visual inspection of the tree.

This jump reflects the sudden passage from classes of a certain homogeneity to much less homogeneous classes.

 In most cases, several thresholds and therefore several possible choices of partitions.



• The dendrogram cut-off can be defined by determining a priori the number of classes into which we want to divide the data set.

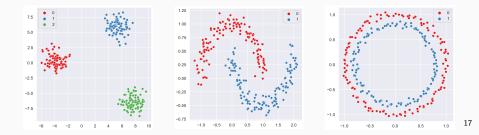
For this, we can use the usual criteria:

- R-square (RSQ): Elbow on the curve $K \mapsto RSQ(K)$,
- Semi-partial R-square (SPRSQ): Stronger reduction of the SPRSQ,
- Calinski-Harabasz: Peak on the curve
- Silhouette criterion,
- etc.

Strengths and Weaknesses

Pros: • Easy consideration of distances and similarities of any type,

- No assumption of a particular number of clusters,
- May correspond to meaningful taxonomies.



Strengths and Weaknesses

Pros: • Easy consideration of distances and similarities of any type,

- No assumption of a particular number of clusters,
- May correspond to meaningful taxonomies.

Cons: • Choice of the dendrogram cut-off,

- The partition obtained at a step depends on the one at the previous step,
- Once a decision is made to combine two clusters, it can't be undone,
- Too slow for large data sets.

Bisson, G. (2000). La similarité: une notion symbolique/numérique. <u>Apprentissage</u> symbolique-numérique, 2:169–201.

Janssen, P. (2012). Cluster analysis to understand socio-ecological systems: a guideline.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241-254.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. <u>Journal of the</u> American statistical association, 58(301):236–244.