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Introduction

We observe n individuals described by p variables: xi =
(
xi1, xi2, . . . , xip

)
∈ X

X =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp


X = Rp , {0, 1}p , ]−π, π]p , Rq ×{0, 1}p−q , . . .

• Initial measurements,
• Transformed measurements,
• Coordinates after dimension reduction.

• Let d be an adapted dissimilarity between individuals,
; Depends mainly on whether the data are quantitative or qualitative.

• Goal: Prioritize the data, i.e. obtain a sequence of nested partitions.

More precisely: Production of a structure (tree or dendrogram) allowing:
• Identification of hierarchical links between individuals or groups of individuals,
• Detection of a “natural” number of classes within the population.
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Example of a Hierarchy: Phylogenetic Tree (Insects)
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Hierarchy

Definition: Hierarchy of a set X = {x1, . . . , xn}
A hierarchy H is a set of parts of X satisfying:
• ∀i ∈ J1, nK, {xi} ∈ H ,
• X ∈ H,
• ∀A,B ∈ H, A ∩B = ∅ or A ⊂ B or B ⊂ A.

Example:
H =

{
{A}, {B}, {C}, {D}, {E},

{A,B}, {C,D}, {C,D,E},

{A,B,C,D,E}
}

Indexed hierarchy
An indexed hierarchy is a pair (H, h) where
H is a hierarchy and h : H → R+ fulfills :
• ∀A ∈ H, h(A) = 0 iff A is a singleton,
• ∀A,B ∈ H s.t A 6= B,
If A ⊂ B then h(A) 6 h(B).

• ∀x ∈ {A,B,C,D,E}, h({x}) = 0,
• h({A,B}) = 1,
• h({C,D}) = 3.5,
• h({C,D,E}) = 5.04,
• h({A,B,C,D,E}) = 7.52.

Dendrogram: Representation of the dendrogram
not unique: if X is a set of n points, 2n − 1
possibilities to order the leaves of the tree.
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Hierarchy vs. Clustering

Janssen (2012)

• Aim: Build an indexed hierarchy

• 1st strategy: Agglomerative Hierarchical Classification (AHC)
• Sart from the bottom of the dendrogram (the singletons),
• Aggregate two by two the closest parts until we obtain only one class.

; How to choose the classes to aggregate?

• 2nd strategy: Divise Hierarchical Classification (DHC)
• Start from the top of the dendrogram,
• Successive divisions until we obtain classes reduced to singletons.

; How to choose the classes to divide?

5



Hierarchy vs. Clustering

Janssen (2012)

• Aim: Build an indexed hierarchy

• 1st strategy: Agglomerative Hierarchical Classification (AHC)
• Sart from the bottom of the dendrogram (the singletons),
• Aggregate two by two the closest parts until we obtain only one class.

; How to choose the classes to aggregate?

• 2nd strategy: Divise Hierarchical Classification (DHC)
• Start from the top of the dendrogram,
• Successive divisions until we obtain classes reduced to singletons.

; How to choose the classes to divide?

5



Hierarchy vs. Clustering

Janssen (2012)

• Aim: Build an indexed hierarchy

• 1st strategy: Agglomerative Hierarchical Classification (AHC)
• Sart from the bottom of the dendrogram (the singletons),
• Aggregate two by two the closest parts until we obtain only one class.

; How to choose the classes to aggregate?

• 2nd strategy: Divise Hierarchical Classification (DHC)
• Start from the top of the dendrogram,
• Successive divisions until we obtain classes reduced to singletons.

; How to choose the classes to divide?
5



Agglomerative Hierarchical Classification [Johnson, 1967, Ward, 1963]

Initialization: • Let an aggregation measure D.

• Let P(0)
n =

{
{x1}, . . . , {xn}

}
be the singleton partition.

Iteration t: From the partition P(t)
K = {C1, . . . , CK} into K classes,

• Aggregate the two classes Ck and Ck′ that minimize the
aggregation measure D: Ck∪k′ = Ck ∪ Ck′

• Form a partition into K − 1 classes: P(t+1)
K−1 = {C1, . . . , Ck∪k′ , . . . , CK}

End: Repeat the aggregation step until a single-class partition is obtained.
Méthodes hiérarchiques

Les approches de type CAH (Classification Ascendante Hiérarchique)

Hiérarchie
(indicée)

C10

C1

C6

C5

C4

C3

C2

C9

C8

C7

C1C2
C3

C4

C5

C6

C8

C10

C7

C9

i

Méthode itérative ...

Une méthode de comparaison des instance/classes existantes

- Notion de ressemblance (distance) entre instances/classes

Un critère de construction d'une nouvelle classe

- On regroupe les deux instances/classes les plus "proches"

( Une procédure de caractérisation de cette classe)

- Généralisation des descriptions

Bisson (2001)
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Agglomerative Hierarchical Classification

Data analysis MOOC of François Husson (in French). 7

https://husson.github.io/MOOC_AnaDo/classif.html


Missing bricks to implement classification

1. Choice of a dissimilarity d between points,
To be made according to the type of data:
Qualitative, Quantitative, etc.

2. Choice of an aggregation measure D between classes.

3. Construction of a dendrogram (not unique!).

4. Criterion for the cut of the dendrogram to deduce a
classification of the data.

Package scipy.cluster.hierarchy ; See attached python notebook.
• linkage: method=’single’,’complete’,’average’,’ward’, etc.
• dendrogram to draw the dendrogram,
• cut_tree to cut the dendrogram so that there are K clusters,
• fcluster to obtain a clustering from a dendrogram, at a given level
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Dendrogram Construction

2.1 Linkage Function
2.2 Cutting the Dendrogram



Single vs. Complete Linkage

Single linkage:

D(Ck, Ck′ ) = min
i∈Ck, i′∈Ck′

d(xi, xi′ )

Complete linkage:

D(Ck, Ck′ ) = max
i∈Ck, i′∈Ck′

d(xi, xi′ )

+ Minimal spanning tree,

− Classes with very different diameters,

− Chaining effect: tendency to aggregate
rather than create new classes

− Sensitivity to noisy individuals.

+ Creates compact classes (diameter
control): this fusion generates the
smallest increase in diameters,

− No separation control: arbitrarily
close classes,

− Sensitivity to noisy individuals.
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Average vs. Ward’s Linkage

Average linkage:

D(Ck, Ck′ ) = 1
|Ck||Ck′ |

∑
i∈Ck

∑
i′∈Ck′

d(xi, xi′ )

Ward’s linkage:

D(Ck, Ck′ ) = |Ck||Ck′ |
|Ck|+ |Ck′ | d(µk, µk′ )2

where µk/µk′ gravity centers of Ck/Ck′ .

+ Compromise between single and
complete linkages: good balance
between class separation and class
diameter,

+ Tendency to produce classes of close
variance.

+ Tendency to build classes of equal
size for a given level of hierarchy,

+ Groups together classes with close
gravity centers,

+ Favors spherical classes.
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Linkage Criteria

Single linkage Complete linkage Average linkage Ward linkage

K = 3

K = 5

K = 2

K = 3

K = 2
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Ward’s Method [Ward, 1963]

Proposition
Let PK = {C1, . . . , CK} a partition of the data and k 6= `.

IIntra(Ck∪k′ ) = IIntra(Ck) + IIntra(Ck′ ) + |Ck||Ck′ |
|Ck|+ |Ck′ |d(µk, µk′ )2

where µk/µk′ gravity centers of Ck/Ck′ , and d Euclidean distance.

Ward’s method: Choose at each step to group the two classes whose merging
implies a minimal increase of the intraclass inertia.

Reminder: IT ot = IInter + IIntra

where IIntra =
K∑

k=1

IIntra(Ck) and IIntra(Ck) =
∑
i∈Ck

d(µk, xi)2.
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Lance-Williams Algorithms

• Naive implementation of hierarchical clustering: Compute the distance matrix
between each cluster at each step.

• Lance-Williams algorithms: Recursive formula for computing cluster distances
at each step.

D(C`, Ck∪k′ ) = αD(C`, Ck) + βD(C`, Ck′ ) + γD(Ck, Ck′ )

+ δ |D(C`, Ck)−D(C`, Ck′ )|

Linkage α β γ δ

Single 0.5 0.5 0 −0.5
Complete 0.5 0.5 0 0.5

Average |Ck|
|Ck|+ |Ck′ |

|Ck′ |
|Ck|+ |Ck′ | 0 0

Ward |Ck|+ |C`|
|Ck|+ |Ck′ |+ |C`|

|Ck′ |+ |C`|
|Ck|+ |Ck′ |+ |C`|

− |C`|
|Ck|+ |Ck′ |+ |C`|

0
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Indexed hierarchy

• In general, ∀A,B ∈ H, h(A ∪B) = D(A,B)

• If (H, h) defined in this way does not verify the properties of an indexed
hierarchy, we can use the following relation:

∀A,B ∈ H , h(A ∪B) = max{D(A,B), h(A), h(B)} .

14
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2.2 Cutting the Dendrogram



Cutting the Dendrogram

• Cutting the dendrogram at a given index level =⇒ Partition.
i.e. cut-off level determines the nb of classes and these classes are then unique.

• The cut-off should be done :
• After aggregations corresponding to low values of the index,
• Before aggregations corresponding to high levels of the index,

which dissociate the well-distinct groups of the population.

• Empirical rule: Selection of a cut when there is a significant jump in the index
by visual inspection of the tree.
This jump reflects the sudden passage from classes of a certain homogeneity to
much less homogeneous classes.

• In most cases, several thresholds and therefore several possible choices of
partitions.
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Cutting the Dendrogram: Some Criteria

• The dendrogram cut-off can be defined by determining a priori the number of
classes into which we want to divide the data set.

For this, we can use the usual criteria:
• R-square (RSQ): Elbow on the curve K 7→ RSQ(K),
• Semi-partial R-square (SPRSQ): Stronger reduction of the SPRSQ,
• Calinski-Harabasz: Peak on the curve
• Silhouette criterion,
• etc.
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Strengths and Weaknesses

Pros: • Easy consideration of distances and similarities of any type,
• No assumption of a particular number of clusters,
• May correspond to meaningful taxonomies.

Cons: • Choice of the dendrogram cut-off,
• The partition obtained at a step depends on the one at the

previous step,
• Once a decision is made to combine two clusters, it can’t be

undone,
• Too slow for large data sets.
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